PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of printing direction on 3D printed ABS specimens

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the recent years, additive manufacturing became an interesting topic in many fields due to the ease of manufacturing complex objects. However, it is impossible to determine the mechanical properties of any additive manufacturing parts without testing them. In this work, the mechanical properties with focus on ultimate tensile strength and modulus of elasticity of 3D printed acrylonitrile butadiene styrene (ABS) specimens were investigated. The tensile tests were carried using Zwick Z005 loading machine with a capacity of 5KN according to the American Society for Testing and Materials (ASTM) D638 standard test methods for tensile properties of plastics. The aim of this study is to investigate the influence of printing direction on the mechanical properties of the printed specimens. Thus, for each printing direction ( and ), five specimens were printed. Tensile testing of the 3D printed ABS specimens showed that the printing direction made the strongest specimen at an ultimate tensile strength of 22 MPa while at printing direction it showed 12 MPa. No influence on the modulus of elasticity was noticed. The experimental results are presented in the manuscript.
Rocznik
Strony
127--130
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Department of Vehicle Elements and Vehicle Structure, Faculty of Transport and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Műegyetem rkp. 3, 1111, Hungary.
  • Department of Vehicle Elements and Vehicle Structure, Faculty of Transport and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Műegyetem rkp. 3, 1111, Hungary.
  • Department of Vehicle Elements and Vehicle Structure, Faculty of Transport and Vehicle Engineering, Budapest University of Technology and Economics, Budapest, Műegyetem rkp. 3, 1111, Hungary.
Bibliografia
  • 1.Dizon, J.R.C., Espera, Jr, A.H., Chen, Q., Advincula, R.C., 2018. Mechanical characterization of 3D-printed polymers, Additive Manufacturing, 20, 44-67.
  • 2.García-Domínguez, A., Claver, J., Camacho, A.M., Sebastián, M.A., 2020. Considerations on the Applicability of Test Methods for Mechanical Characterization of Materials Manufactured by FDM, Materials, 13(1), 28.
  • 3.Ilyés, K., Kovács, N.K., Balogh, A., Borbás, E., Farkas, B., Casian, T., Marosi, Gy., Tomuță, I., Nagy, Z.K., 2019. The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: Material considerations–printability–process modulation, with consecutive effects on in vitro release, stability and degradation, European Journal of Pharmaceutical Sciences, 129, 110-123.
  • 4.Jiang, R., Kleer, R., Piller, F.T., 2017. Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030, Technological Forecasting and Social Change, 117, 84-97.
  • 5.Keleş, Ö., Blevins, C.W., Bowman, K.J., 2017. Effect of build orientation on the mechanical reliability of 3D printed ABS, Rapid Prototyping Journal.
  • 6.Letcher, T., Waytashek, M., 2014. November. Material property testing of 3D-printed specimen in PLA on an entry-level 3D printer, In ASME 2014 international mechanical engineering congress and exposition. American Society of Mechanical Engineers Digital Collection.
  • 7.Luzanin, O., Movrin, D., Stathopoulos, V., Pandis, P., Radusin, T., Guduric, V., 2019. Impact of processing parameters on tensile strength, inprocess crystallinity and mesostructure in FDM-fabricated PLA specimens, Rapid Prototyping Journal.
  • 8.Mbow, M.M., Marin, P.R., Pourroy, F., 2020. Extruded diameter dependence on temperature and velocity in the fused deposition modeling process, Progress in Additive Manufacturing, 1-14.
  • 9.Mukherjee, M., 2019. Effect of build geometry and orientation on microstructure and properties of additively manufactured 316L stainless steel by laser metal deposition, Materialia, 7, 100359.
  • 10.Sagias, V.D., Giannakopoulos, K.I., Stergiou, C., 2018. Mechanical properties of 3D printed polymer specimens, Procedia Structural Integrity, 10, 85-90.
  • 11.Sandeep, D.C., Chhabra, D., 2017. Comparison and analysis of different 3d printing techniques, International Journal of Latest Trends In Engineering And Technology, 8(4-1), 264-272.
  • 12.Shkundalova, O., Rimkus, A., Gribniak, V., 2018. Structural application of 3D printing technologies: mechanical properties of printed polymeric materials, Konstrukcinis 3D spausdinimo technologijų taikymas: spausdintų polimerinių medžiagų mechaninės savybės. Mokslas– Lietuvos ateitis/Science–Future of Lithuania, 10.
  • 13.Tábi, T., Kovács, N.K., Sajó, I.E., Czigány, T., Hajba, S., Kovács, J.G., 2016. Comparison of thermal, mechanical and thermomechanical properties of poly(lactic acid) injection-molded into epoxy-based Rapid Prototyped (PolyJet) and conventional steel mold, Journal of Thermal Analysis and Calorimetry, 123, 349-361.
  • 14.Tóth, Cs., Kovács, N.K., 2020. Additív gyártástechnológiával készült, politejsav mátrixú kompozitok vizsgálata. Polimerek, 6(5), 926-930.
  • 15.Urbanic, R.J., Saqib, S.M., 2019. A manufacturing cost analysis framework to evaluate machining and fused filament fabrication additive manufacturing approaches, The International Journal of Advanced Manufacturing Technology, 102(9-12), 3091-3108.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acbd65ad-e9ed-4378-8272-49804f33995e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.