PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Locally Reinforcement TiC-Fe Type Produced in Situ in Castings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Refinement is one of the most energy consuming technological process, aimed at obtaining mineral raw materials of the proper grain size. Cast structural elements such as jaws or hammers in crushing machines operate under conditions of an intensive wear. The data indicate that 80% of failures of machines and devices is caused by wearing of rubbing surfaces. This problem became the subject of several scientific and industrial investigations carried out in the whole world in order to produce materials ultra- wear resistant. Methods allowing to obtain wear resistant composite castings are discussed in the hereby paper. Within the performed research microstructures of the produced composite zones were presented and the comparative analysis with regard to mechanical and functional properties of local composite reinforcements in relation to the commercial alloys of increased wear resistance was performed. The results show almost twenty five times increase in wear resistance compared to manganese cast steel containing 18% Mn.
Słowa kluczowe
Rocznik
Strony
77--82
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • INNERCO Ltd., Zarzecze 42 30-134 Cracow, Poland
  • AGH University of Science and Technology, Department of Engineering of Cast Alloys and Composites Faculty of Foundry Engineering, Reymonta 23, 30-059 Cracow, Poland
  • INNERCO Ltd., Zarzecze 42 30-134 Cracow, Poland
  • AGH University of Science and Technology, Department of Foundry Processes Engineering Faculty of Foundry Engineering,Reymonta 23, 30-059 Cracow, Poland
autor
  • Pedagogical Univeristy of Cracow, Institute of Technology Faculty of Mathematics, Physics and Technical Science, Podchorazych 2, 30-084 Cracow, Poland
autor
  • AGH University of Science and Technology Academic Centre of Materials and Nanotechnology, al. Mickiewicza 30, 30-059 Cracow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25 St. 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Department of Foundry Processes Engineering Faculty of Foundry Engineering,Reymonta 23, 30-059 Cracow, Poland
autor
  • AGH University of Science and Technology, Department of Foundry Processes Engineering Faculty of Foundry Engineering, Reymonta 23, 30-059 Cracow, Poland
  • EUROCAST INDUSTRIES Ltd., Grabowa 21/7, 30- 227 Cracow, Poland
Bibliografia
  • [1] Dobrzański, L.A., Matula, G. (2012). Basics of powder metallurgy and sintered materials. Open Access Library. 8(14), 1-156. (in Polish).
  • [2] Kilarski, J., Studnicki, A., Suchoń, J. (2009). Ferro-alloys used in the cast component subjected to wear. Postępy teorii i praktyki odlewniczej. 211-230. (in Polish).
  • [3] Sakwa, W., Jura, S., Sakwa, J. (1980). Wear-resistant cast alloys of iron. Part I. Cast Iron. Kraków: ZG STOP. (in Polish).
  • [4] Sakwa, W., Jura, S., Sakwa, J. (1980). Wear-resistant cast alloys of iron. Part II. Cast Steel. Kraków: ZG STOP. (in Polish).
  • [5] Olejnik, E., Sikora, G., Sobula, S., Tokarski, T. & Grabowska, B. (2014). Effect of compaction Pressure Applied to TiC Reactants on the Microstructure and Properties of Composite Zones Produced in situ in Steel Castings. Material Science Forum. 782, 527-532.
  • [6] Olejnik, E., Sobula, S., Tokarski, T. & Sikora, G. (2013). Composite zones obtained by in situ synthesis in steel casting. Archives of Metallurgy and Materials. 58, 769-773.
  • [7] Dolata, A.J. (2014). Centrifugal castings locally reinforced with porous Al2O3 preform. Archives of Metallurgy and Materials. 59(1), 345-348.
  • [8] Dolata, A., Śleziona, J., Formanek, B. & Wieczorek, J. (2005). Al-FeAl-TiAl-Al2O3 composites with hybrid reinforcement. Journal of Materials Processing Technology. 162-163, 33-38.
  • [9] Myalski, J. & Sleziona, J. (2006). Glassy carbon particles as component to modification of tribological properties. Journal of Materials Processing Technology. 175(1-3), 291-298.
  • [10] Lelito, J., Żak, P. & Suchy, J.S. (2009). The grain nucleation rate of the AZ291/SiC composite based on Maxwell- Hellawell Model. Archives of Metallurgy and Materials. 54(2), 347- 350.
  • [11] Fraś, E., Janas, A., Kolbus, A. & Górny, M. (1999). Cu + TiC Composites synthesis by RGI process. Archives of Metallurgy. 44(3), 253 -266.
  • [12] Janas, A., Kolbus, A. & Olejnik, E. (2009). On the character of matrix – reinforcing particle phase boundaries in MeC and MeB (Me = W, Zr, Ti, Nb, Ta) in stu composite. Archives of Metallurgy and Materials. 54(2), 319-327.
  • [13] Fengjum, C. & Yison, W. (2007). Microstructure of Fe-TiC surface composite produced by cast sintering. Materials Letters. 61, 1517-1521.
  • [14] Feng, K., Yang, Y., Shen, B. & Guo, L. (2005). In situ synthesis of TiC/Fe composites by reaction casting. Materials and Design. 26, 37-40.
  • [15] Fraś, E., Olejnik, E., Janas, A. & Kolbus, A. (2009). FGMs generated method SHSM. Archives of Foundry Engineering. 9(2), 123-128.
  • [16] Merzhanov, A.G. (1996). Combustion processes that synthesize materials. Journal of Materials Processing Technology. 56(1-4), 222-241.
  • [17] Fraś, E., Olejnik, E., Janas, A. & Kolbus, A. (2010). Fabrication of in situ composites layer on cast steel. Archives of Foundry Engineering. 10(1), 175- 180.
  • [18] Fraś, E., Olejnik, E., Janas, A. & Kolbus, A. (2010). The morphology of TiC carbides produced in surface layers of carbon steel castings. Archives of Foundry Engineering. 10(4), 39-42.
  • [19] Olejnik, E., Janas, A., Kolbus, A. & Grabowska, B. (2011). Composite layer fabricated by in situ technique in iron castings. Composites. 11(2), 120-124.
  • [20] Park, H.I., Nakata, K. & Tomida, S. (2000) In situ formation of TiC particulate composite layer on cast iron by laser alloying of thermal sprayed titanium coating. Journal of Materials Science. 35(3), 747-755.
  • [21] Kurtyka, P., Rylko, N., Tokarski, T., Wójcicka, A. & Pietras, A. (2015). Cast aluminium matrix composite modified with using FSP process. Changing of the structure and mechanical properties. Composite structures. 133, 959-967
  • [22] Fraś, E., Janas, A., Wierzbiński, S. & Kolbus A. (2000). Cast aluminum composites "in situ" reinforced titanium carbides. Solidification of Metals and Alloys. 2(43), 167 -174. (in Polish).
  • [23] Olejnik, E., Górny, M., Tokarski, T., Grabowska, B., Kmita, A. & Sikora, G. (2013). Composite zones produced in iron castings by in-situ synthesis of TiC carbides. Archives of Metallurgy and Materials. 58(2), 465-471.
  • [24] Opris, C.D., Liu, R., Yao, M.X. & Wu, X.J. (2007). Development of Stellite alloy composites with sintering/HIPing technique for wear-resistant applications. Materials and Design. 28(2), 581- 591.
  • [25] Kopyciński D., Kawalec, M., Szczęsny, A., Gilewski, R. & Piasny, S. (2013). Analysis of the structure and abrasive wear resistance of white cast iron with precipitates of carbides. Archives of Metallurgy and Materials. 58(3), 973-976.
Uwagi
Opracowane ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acbc580c-9a55-4a38-b0b0-9ce009b0c468
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.