Identyfikatory
Języki publikacji
Abstrakty
This article focuses on a noise of aerodynamic origin, generated by the flow over single and multiple rectangular cavities. The paper presents the methodology and results of the conducted numerical simulations of the air flow in a channel with a set of rectangular cavities. The aeroacoustic wave equation was used to determine the acoustic pressure generated by the flow. Various configurations of the cavities made it possible to study the influence of their reciprocal location on the generated sound. The research showed that as the distance between the cavities decreased, the acoustic pressure levels increased. They were several decibels higher than for the single-cavity case.
Czasopismo
Rocznik
Tom
Strony
art. no. 2024110
Opis fizyczny
Bibliogr. 27 poz., rys., wykr.
Twórcy
autor
- AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland,
autor
- AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland,
Bibliografia
- 1. S. Glegg, W. Devenport; Aeroacoustics of Low Mach Number Flows; Academic Press, 2017
- 2. A. Fry; Noise Control in Building Services; Pergamon Press, 1988
- 3. E. Palmer (Ed.); Noise and Vibration Control for Building Services Systems CIBSE Guide B5; The Chartered Institution of Building Services Engineers; 2016
- 4. X. Gloerfelt; Cavity Noise; VKI Lectures; 2007
- 5. K. Karamcheti; Acoustic radiation from two-dimensional rectangular cut-outs in aerodynamic surfaces; NACA Tech. Rep.; TN 3487
- 6. J.E. Rossiter; Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds; Reports and Memoranda, 1966
- 7. H.H. Heller, D.G. Holms, E.E. Covert; Flow-induced pressure oscillations in shallow cavities; J. Sound Vib., 1971, 18(4), 545-553; DOI: 10.1016/0022-460X(71)90105-2
- 8. A.J. Bilanin, E.E. Covert; Estimation of possible excitation frequencies for shallow rectangular cavities; AIAA J., 1973, 11(3), 347-351; DOI: 10.2514/3.6747
- 9. M.B. Tracy; Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds; vol. 3669; NASA, Langley Research Center, 1997
- 10. G. Ashcroft, X. Zhang; Vortical structures over rectangular cavities at low speed; Phys. Fluids, 2005, 17(1), 015104; DOI: 10.1063/1.1833412
- 11. V. Thangamani, K. Knowles, A.J. Saddington; The effects of scaling high subsonic cavity flow oscillations and control; J. Aircraft, 2014, 51(2), 424-433; DOI: 10.2514/1.C032032
- 12. J.L. Wagner, S.J. Beresh, K.M. Casper, E.P. DeMauro, S. Arunajatesan; Resonance dynamics in compressible cavity flows using time-resolved velocity and surface pressure fields; J. Fluid. Mech., 2017, 830, 494-527; DOI: 10.1017/jfm.2017.606
- 13. D. Rockwell, E. Naudascher; Review - Self-sustaining oscillations of flow past cavities; J. Fluid. Eng.; 1978, 100(2), 152-165; DOI:10.115/1.3448624
- 14. C.K. Tam, P.J.W. Block; On the tones and pressure oscillations induced by flow over rectangular cavities; J. Fluid Mech., 1978, 89(2), 373-399; DOI: 10.1017/S0022112078002657
- 15. S. Ziada, P. Lafon; Flow-excited acoustic resonance excitation mechanism, design guidelines, and counter measures; ASME Appl. Mech. Rev, 2014, 66(1), 010802; DOI: 10.1115/1.4025788
- 16. A. Sadamoto, Y. Tsubakishita, Y. Murakami; Sound attenuation in circular duct using slit-like short expansion of eccentric and/or serialized configuration; J. Sound Vib., 2004, 277, 987-1003; DOI:10.1016/j.jsv.2003.09.028
- 17. S. Schoder, C. Junger, M. Kaltenbacher; Computational aeroacoustics of the EAA benchmark case of an axial fan; Acta Acust., 2020, 4(5), 22; DOI:10.1051/aacus/2020021
- 18. J.C. Hardin, D.S. Pope; An acoustic/viscous splitting technique for computational aeroacoustics; Theor. Comp. Fluid Dyn., 1994, 6, 323-340; DOI:10.1007/BF00311844
- 19. J. Blazek; Computational Fluid Dynamics. Principles and Applications; Elsevier Ltd. 2015
- 20. F. Menter; Zonal two equation k- ω turbulence models for aerodynamic flows; 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 1993
- 21. F. Menter; Two-equation eddy-viscosity turbulence models for engineering applications; AIAA Journal, 1994, 32(8), 1598-1605; DOI:10.2514/3.12149
- 22. M. Strelets; Detached eddy simulation of massively separated flows; 39th Aerospace Sciences Meeting and Exhibit, 2001
- 23. M. Kaltenbacher; Theoretical Acoustics. Part: Aeroacoustics; Graz University of Technology, 2021
- 24. P. Łojek, I. Czajka; Impact of cavity edges shape on aerodynamic noise; Vib. Phys. Sys., 2022, 33(3), 2022301; DOI:10.21008/j.0860-6897.2022.3.01
- 25. S. Schoder et all.; Application limits of conservative source interpolation methods using a low Mach number hybrid aeroacoustic workflow; J. Theo. Comp. Acous., 2021, 29(1), 1-27; DOI:10.1142/S2591728520500322
- 26. R. Ma, P. Slaboch, S. Morris; Fluid mechanics of the flow-excited Helmholtz resonator; J. Fluid Mech., 2009, 623, 1-23; DOI: 10.1017/S0022112008003911
- 27. P. Łojek, I. Czajka, A. Gołaś; Numerical Study of the Impact of Fluid-Structure Interaction on Flow Noise over a Rectangular Cavity; Energies, 2022, 15(21), 8017; DOI:10.3390/en15218017
Identyfikator YADDA
bwmeta1.element.baztech-acbab43d-31a8-44c7-9c42-09c2bd86c45a