PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rupture of an evaporating liquid bridge between two grains

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study examines rupture of evaporating liquid bridges between two glass spheres. Evolution of the bridge profile has been recorded with the use of high-speed camera. Geometrical characteristics of the bridge were then used to calculate evolution of the variables during the process: Laplace pressure, capillary force, and surface tension force. For the purpose of reference, the bridge evolution is followed also during kinematic extension. During both processes the diameter of the neck decreases, with an acceleration of about 1-2 ms before the rupture. Two distinct rupture modes are observed, depending on the bridge aspect ratio. After the rupture, the mass of liquid splits, forming two separate oscillating drops attached to the spheres, and a suspended satellite droplet. Just before the rupture, an increasing repulsive Laplace pressure, and decreasing negative surface tension force develop. Capillary force follows the trend of the surface tension force, with an accelerating decline. Duration of the whole process and liquid mass stabilization is from 10 to 60 ms.
Czasopismo
Rocznik
Strony
1087--1108
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Laboratoire de Micromécanique et d'Intégrité des Structures, MIST, IRSN-CNRS-Université Mont pellier 2, Montpellier, France
  • Laboratoire de Micromécanique et d'Intégrité des Structures, MIST, IRSN-CNRS-Université Mont pellier 2, Montpellier, France
autor
  • Laboratoire de Micromécanique et d'Intégrité des Structures, MIST, IRSN-CNRS-Université Mont pellier 2, Montpellier, France
autor
  • Duke University, Durham, NC, USA
Bibliografia
  • 1. Bernoff, A.J., A.L. Bertozzi, and T.P. Witelski (1998), Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff, J. Stat. Phys. 93, 3-4, 725-776, DOI: 10.1023/B:JOSS.0000033251.81126.af.
  • 2. Bièvre, G., D. Jongmans, T. Winiarski, and V. Zumbo (2012), Application of geo-physical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps), Hydrol. Process. 26, 14, 2128-2142, DOI: 10.1002/hyp.7986.
  • 3. Brenner, M.P., X.D. Shi, and S.R. Nagel (1994), Iterated instabilities during droplet fission, Phys. Rev. Lett.73, 25, 3391-3396, DOI: 10.1103/PhysRevLett. 73.3391.
  • 4. Bush, J.W.M. (2004), MIT Lecture Notes on Surface Tension, Sect. 5, Massachusetts Institute of Technology, Cambridge, pdf.
  • 5. Butt, H.-J., and M. Kappl (2009), Normal capillary forces, Adv. Coll. Interf. Sci. 146, 1-2, 48-60, DOI: 10.1016/j.cis.2008.10.002.
  • 6. De Bisschop, F.R.E., and W.J.L. Rigole (1982), A physical model for liquid capillary bridges between adsorptive solid spheres: The nodoid of plateau, J. Coll. Interf. Sci.88, 1, 117-128, DOI: 10.1016/0021-9797(82)90161-8.
  • 7. de Boer, P.C.T., and M.P. de Boer (2008), Rupture work of pendular bridges, Langmuir 24, 1, 160-169, DOI: 10.1021/la701253u.
  • 8. Dixon, D., N. Chandler, J. Graham, and M.N. Gray (2002), Two large-scale sealing tests conducted at Atomic Energy of Canada’s underground research laboratory: the buffer-container experiment and the isothermal test, Can. Geo-tech. J. 39, 3, 503-518, DOI: 10.1139/t02-012.
  • 9. Edgerton, H.E., E.A. Hauser, and W.B. Tucker (1937), Studies in drop formation as revealed by the high-speed motion camera, J. Phys. Chem. 41, 7, 1017-1028, DOI: 10.1021/j150385a012.
  • 10. Eggers, J. (1997), Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys.69, 3, 865-929, DOI: 10.1103/RevModPhys.69.865.
  • 11. Erle, M.A., D.C. Dyson, and N.R. Morrow (1971), Liquid bridges between cylinders, in a torus, and between spheres, AIChE J. 17, 1, 115-121, DOI: 10.1002/aic.690170125.
  • 12. Fisher, R.A. (1926), On the capillarity forces in an ideal soil; correction of formulae given by W.B. Haines, J. Agric. Sci. 16, 3, 492-505, DOI: 10.1017/ S0021859600007838.
  • 13. Gili, J.A., and E.E. Alonso (2002), Microstructural deformation mechanisms of un-saturated granular soils, Int. J. Numer. Anal. Meth. Geomech. 26, 5, 433-468, DOI: 10.1002/nag.206.
  • 14. Gras, J.-P., J.-Y. Delenne, and M.S. El Youssoufi (2013), Study of capillary interaction between two grains: a new experimental device with suction control, Granul. Matter15, 1, 49-56, DOI: 10.1007/s10035-012-0388-2.
  • 15. Haines, W.B. (1925), Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil, J. Agric. Sci. 15, 4, 529-535, DOI: 10.1017/S0021859600082460.
  • 16. Hoek, E., and J.W. Bray (1981), Rock Slope Engineering, 3rd ed., CRC Press, Lon-don.
  • 17. Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2007), Drying shrinkage of deform-able porous media: mechanisms induced by the fluid removal. In:T.C. Siegel et al. (eds.), Proc. GeoDenver 2007 “Computer Applications in Geotechnical Engineering”, 18-21 February 2007, Denver, USA, GSP No. 157, DOI: 10.1061/40901(220)17.
  • 18. Hu, L.B., H. Peron, L. Laloui, and T. Hueckel (2011), A multi-scale multi-physics model of soil drying. In: Proc. Geo-Frontiers 2011 “Advances in Geotechnical Engineering”, 13-16 March 2011, Dallas, USA, ASCE GSP No. 211, 4349-4358, DOI: 10.1061/41165(397)445.
  • 19. Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013a), Desiccation shrinkage of non-clayey soils: multiphysics mechanisms and a microstructural model, Int. J. Numer. Anal. Meth. Geomech. 37, 12, 1761-1781, DOI: 10.1002/nag.2108.
  • 20. Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013b), Desiccation shrinkage of non-clayey soils: a numerical study, Int. J. Numer. Anal. Meth. Geomech.37, 12, 1782-1800, DOI: 10.1002/nag.2107.
  • 21. Hueckel, T., B. Mielniczuk, and M.S. El Youssoufi (2013), Micro-scale study of rupture in desiccating granular media. In:C. Meehan et al. (eds.), Proc. Geo-Congress 2013 “Stability and Performance of Slopes and Embank-ments III”, 3-7 March 2013, San Diego, USA, ASCE GSP No. 231, 808-817, DOI: 10.1061/9780784412787.082.
  • 22. Hueckel, T., B. Mielniczuk, M.S. El Youssoufi, L.B. Hu, and L. Laloui (2014), A three-scale cracking criterion for drying soils, Acta Geophys. 62, 5, 1049-1059, DOI: 10.2478/s11600-014-0214-9(this issue).
  • 23. Kowalski, S.J., and B. Mielniczuk (2007), Analysis of effectiveness and stress development during convective and microwave drying, Dry. Technol. 26, 1, 64-77, DOI: 10.1080//07373930701781637.
  • 24. Leppinen, D., and J.R. Lister (2003), Capillary pinch-off in inviscid fluids, Phys. Fluids 15, 2, 568-578, DOI: 10.1063/1.1537237.
  • 25. Lian, G., C. Thornton, and M.J. Adams (1993), A theoretical study of the liquid bridge forces between two rigid spherical bodies, J. Colloid Interf. Sci. 161, 1, 138-147, DOI: 10.1006/jcis.1993.1452.
  • 26. Lowry, B.J., and P.H. Steen (1995), Flow-influenced stabilization of liquid columns, J. Colloid Interf. Sci. 170, 1, 38-43, DOI: 10.1006/jcis.1995.1068.
  • 27. Mason, G., and W.C. Clark (1965), Liquid bridges between spheres, Chem. Eng. Sci.20, 10, 859-866, DOI: 10.1016/0009-2509(65)80082-3.
  • 28. Mazzone, D.N., G.I. Tardos, and R. Pfeffer (1986), The effect of gravity on the shape and strength of a liquid bridge between two spheres, J. Colloid Interf. Sci.113, 2, 544-556, DOI: 10.1016/0021-9797(86)90187-6.
  • 29. Melrose, J.C. (1966), Model calculations for capillary condensation, AIChE J. 12, 5, 986-994, DOI: 10.1002/aic.690120526.
  • 30. Mielniczuk, B., T. Hueckel, and M.S. El Youssoufi (2014), Evaporation-induced evolution of the capillary force between two grains, Granul. Matter, DOI: 10.1007/s10035-014-0512-6.
  • 31. Padday, J.F. (1992), The formation and breakage of liquid bridges under microgravity, Microgravity Q. 2, 4, 239-249.
  • 32. Padday, J.F., G. Pétré, C.G. Rusu, J. Gamero, and G. Wozniak (1997), The shape, stability and breakage of pendant liquid bridges, J. Fluid Mech. 352, 177-204, DOI: 10.1017/S0022112097007234.
  • 33. Peregrine, D.H., G. Shoker, and A. Symon (1990), The bifurcation of liquid bridges, J. Fluid Mech. 212, 25-39, DOI: 10.1017/S0022112090001835.
  • 34. Péron, H., J.Y. Delenne, L. Laloui, and M.S. El Youssoufi (2009a), Discrete element modelling of drying shrinkage and cracking of soils, Comput. Geotech.36, 1-2, 61-69, DOI: 10.1016/j.compgeo.2008.04.002.
  • 35. Péron, H., T. Hueckel, L. Laloui, and L.B. Hu (2009b), Fundamentals of desiccation cracking of fine-grained soils: experimental characterization and mecha-nisms identification, Can. Geotech. J. 46, 10, 1177-1201, DOI: 10.1139/ T09-054.
  • 36. Péron, H., L. Laloui, L.B. Hu, and T. Hueckel (2013), Formation of drying crack patterns in soils: a deterministic approach, Acta Geotech. 8, 2, 215-221, DOI: 10.1007/s11440-012-0184-5.
  • 37. Plateau, J. (1864), The figures of equilibrium of a liquid mass, The Annual Report of the Smithsonian Institution, Washington DC, USA, 338-369.
  • 38. Plateau, J. (1873), Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, Gauthier-Villars, Paris (in French).
  • 39. Shi, X.D., M.P. Brenner, and S.R. Nagel (1994), A cascade of stucture in a drop falling from a faucet, Science265, 5169, 219-222, DOI: 10.1126/science. 265.5169.219.
  • 40. van Honschoten, J.W., N.R. Tas, and M. Elwenspoek (2010), The profile of a capillary liquid bridge between solid surfaces, Am. J. Phys. 78, 3, 277-286, DOI: 10.1119/1.3273854.
  • 41. Vaynblat, D., J.R. Lister, and T.P. Witelski (2001), Rupture of thin viscous films by van der Waals forces: Evolution and self-similarity, Phys. Fluids13, 5, 1130-1140, DOI: 10.1063/1.1359749.
  • 42. Willett, Ch.D., M.J. Adams,S.A. Johnson, and J.P.K. Seville (2000), Capillary bridges between two spherical bodies, Langmuir 16, 24, 9396-9405, DOI: 10.1021/la000657y.
  • 43. Zhang, X., R.S. Padgett, and O.A. Basaran (1996), Nonlinear deformation and breakup of stretching liquid bridges, J. Fluid Mech. 329, 207-245, DOI: 10.1017/S0022112096008
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acba7c08-d84f-44ff-8f64-832fc16c2c23
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.