Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Zn0.7Co0.3 (Ti1-xSnx)Nb2O8 (x = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35) microwave ceramics were prepared by traditional solidstate reaction method. The influences of Sn substituted for Ti on the phase constitution, crystal structure and microwave dielectric properties of Zn0.7Co0.3 (Ti1-xSnx)Nb2O8 ceramics were discussed. The XRD patterns revealed the main phase of ZnTiNb2O8 and little content of Zn0.17Ti0.5Nb0.33O2 secondary phase. With further substitution of Sn, the lattice constant, volume and apparent density of the ceramics increased, the ceramic structure reached a maximal compactness at x = 0.2 which was shown on SEM. Tremendous improvement of Q × f and a declining trend of Ɛr and τf were obtained with increasing x value. Appropriate substitution value (x = 0.10) would ensure excellent microwave dielectric properties (Ɛr = 34.1, Q × f = 40562 GHz, τf =-5 ppm/°C) of the ceramics sintered at 1080 °C.
Wydawca
Czasopismo
Rocznik
Tom
Strony
405--411
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of electronic Science and Technology of China, Chengdu 610054, China
autor
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of electronic Science and Technology of China, Chengdu 610054, China
autor
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of electronic Science and Technology of China, Chengdu 610054, China
autor
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of electronic Science and Technology of China, Chengdu 610054, China
autor
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of electronic Science and Technology of China, Chengdu 610054, China
Bibliografia
- [1] MEI Q.J., LI C.Y., GUO J.D., WU H.T., J. Alloy. Compd, 626 (2015), 217.
- [2] FREER R., AZOUGH F., J. Eur. Ceram. Soc., 28 (2008), 1433.
- [3] TANG B., FANG Z., LI H., LIU L., ZHANG S., J. Mater. Sci.-Mater. El., 26 (2014), 300.
- [4] KIM D.-W., KIM D.-Y., HONG K.S., J. Mater. Res, 15 (2000), 1331.
- [5] LIAO Q., LI L., DING X., Solid State Sci., 14 (2012), 1385.
- [6] PARK H.S., YOON K.H., KIM E.S., Mater. Chem. Phys, 79 (2003), 181.
- [7] KIM E.S., KANG D.H., Ceram. Int, 34 (2008), 883.
- [8] PARK J.-H., CHOI Y.-J., NAHM S., PARK J.-G., J. Alloy. Compd, 509 (2011), 6908.
- [9] LIAO Q., LI L., ZHANG P., CAO L., HAN Y., Mater. Sci. Eng. B-Adv., 176 (2011), 41.
- [10] HUAN Z., SUN Q., MA W., WANG L., XIAO F., CHEN T., J. Alloy. Compd, 551 (2013), 630.
- [11] GUO M., GONG S., DOU G., ZHOU D., J. Alloy. Compd, 509 (2011), 5988.
- [12] LIAO Q., LI L., Dalton T., 41 (2012), 6963.
- [13] FANG Z., TANG B., SI F., GONG Y., ZHANG S., J. Electron. Mater, (2016), 1.
- [14] CHEN G.H., CHEN J.S., KANG X.L., LUO Y., FENG Q., YUAN C.L., YANG Y., J. Alloy. Compd, 675 (2016), 301.
- [15] SHANNON R.T., Acta Crystallogr. A, 32 (1976), 751.
- [16] KIM D.-W., KIM J.-H., KIM J.-R., HONG K.-S., Jpn. J. Appl. Phys, 40 (2001), 5994.
- [17] PETZELT J., PAˇC ESOV S., FOUSEK J., KAMBA S., ˇZ ELEZN V., KOUKAL C., SCHWARZBACH J., Ferroelectrics, 93 (1989), 77.
- [18] FANG Z., TANG B., SI F., ZHANG S., J. Alloy. Compd, 63 (2017), 843.
- [19] ZHOU X., YANG F., LI X., SUN C., ZHANG S., J. Mater. Sci.-Mater. El., (2016).
- [20] FANG Z., TANG B., SI F., ZHANG S., Ceram. Int, (2016),
- [21] FANG Z., TANG B., LI Y., SI F., ZHANG S., J. Electron. Mater, 44 (2015), 4236.
- [22] LIAO Q., LI L., ZHANG P., CAO L., HAN Y., Solid State Sci., 13 (2011), 1201.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acb1b3b6-8edd-4d94-b316-ee687567ab8a