PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of fault zone induced site effect in the İzmit basin, Turkey

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The seismic hazard in the İzmit basin, located in Marmara region of western Turkey, is high due to the northern branch of the North Anatolian Fault (NAF) and the potential ground motion amplification that may be caused by local site conditions, sedimentary basin effect as well as fault zone (FZ) induced site effect resulting from the generation of guided waves. In this study, we elaborate the relevance of the FZ-induced site effect in the İzmit basin along a 16.5-km-long N-S profile across the basin and perpendicular to the NAF by time and frequency domain analysis of waveforms obtained from two-dimensional (2D) simulations of viscoelastic wave propagation for a double-couple source at 14 km depth using a reference (basin-only) model and three basin-with-fault models: shallow (6 km), intermediate (12 km) and deep (19 km) FZ models. Our results show that the FZ-induced site effect within and near the northern branch of NAF in the İzmit basin can be very prominent with amplification of about 5–10 in the frequency range of 0.05–4 Hz and about 20 at frequencies above 2 Hz, respectively. We obtain the most dramatic results for the deep FZ model causing shear- and surface-wave amplification of about 15 at frequencies higher than 2.5 Hz for the distances between 6 and 13 km.
Czasopismo
Rocznik
Strony
2069--2083
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Department of Geophysical Engineering, Faculty of Mines, İstanbul Technical University, 34469 Maslak, İstanbul, Turkey
  • Department of Geophysical Engineering, Faculty of Mines, İstanbul Technical University, 34469 Maslak, İstanbul, Turkey
Bibliografia
  • 1. Barka AA (1996) Slip distribution along the North Anatolian fault associated with large earthquakes of the period 1939–1967. BSSA 86:1238–1254
  • 2. Barka AA, Kadinsky-Cade K (1988) Strike-slip fault geometry in Turkey and its influence on earthquake activity. Tectonics 7(3):663–684. https://doi.org/10.1029/TC007i003p00663
  • 3. Ben-Zion Y (1989) The response of two joined quarter spaces to SH line sources located at the material discontinuity interface. Geophys J Int 98:213–222. https://doi.org/10.1111/j.1365-246X.1989.tb03346.x
  • 4. Ben-Zion Y (1990) The response of two half spaces to point dislocations at the material interface. Geophys J Int 101(3):507–528. https://doi.org/10.1111/j.1365-246X.1990.tb05567.x
  • 5. Ben-Zion Y (1998) Properties of seismic fault zone waves and their utility for imaging low-velocity structures. J Geophys Res 103(B6):12567–12585. https://doi.org/10.1029/98JB00768
  • 6. Ben-Zion Y, Aki K (1990) Seismic radiation from an SH line source in a laterally heterogeneous planar fault zone. BSSA 80(4):971–994
  • 7. Ben-Zion Y, Peng Z, Okaya D, Seeber L, Armbruster JG, Ozer N, Michael AJ, Baris S, Aktar M (2003) A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian fault, western Turkey. Geophysical J Int 152(3):699–717. https://doi.org/10.1046/j.1365-246X.2003.01870.x
  • 8. Brocher TM (2008) Compressional and shear-wave velocity versus depth relations for common rock types in Northern California. BSSA 98(2):950–968. https://doi.org/10.1785/0120060403
  • 9. Calderoni G, Rovelli A, Giovambattista RD (2010) Large amplitude variations recorded by an on-fault seismological station during the L’Aquila earthquakes: evidence for a complex fault-induced site effect. Geophys Res Lett 37(L24305):1–5. https://doi.org/10.1029/2010GL045697
  • 10. Cormier VF, Spudich P (1984) Amplification of ground motion and waveform complexity in fault zones: examples from the San Andreas and Calaveras Faults. Geophys J R Astr Soc 79(1):135–152. https://doi.org/10.1111/j.1365-246X.1984.tb02846.x
  • 11. Fohrmann M, Igel H, Jahnke G, Ben-Zion Y (2004) Guided waves from sources outside faults: an Indication for shallow fault zone structure? Pure Appl Geophys 161:2125–2137. https://doi.org/10.1007/s00024-004-2553-y
  • 12. Gardner GHF, Gardner LW, Gregory AR (1974) Formation velocity and density–the diagnostic basics for stratigraphic traps. Geophysics 39(6):770–780. https://doi.org/10.1190/1.1440465
  • 13. General Directorate of Mineral Research and Explorations Maps (2003) Geological Map of Kocaeli Province (in Turkish)
  • 14. Hough SE, Ben-Zion Y, Leary P (1994) Fault-zone waves observed at the Southern Joshua Tree Earthquake Rupture Zone. BSSA 83(3):761–767
  • 15. Igel H, Jahnke G, Ben-Zion Y (2002) Numerical simulation of fault zone guided waves: accuracy and 3-D effects. Pure Appl Geophys 159:2067–2083. https://doi.org/10.1007/978-3-0348-8203-3_11
  • 16. Jahnke G, Igel H, Ben-Zion Y (2002) Three-dimensional calculations of fault-zone-guided waves in various irregular structures. Geophys J Int 151(2):416–426. https://doi.org/10.1046/j.1365-246X.2002.01784.x
  • 17. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe: version 4: data grid. Web publication/site, CGIAR Consortium for Spatial Information. http://srtm.csi.cgiar.org/
  • 18. Karabulut H, Bouchon M (2007) Spatial variability and non-linearity of strong ground motion near a fault. Geophysical J Int 170(1):262–274. https://doi.org/10.1111/j.1365-246X.2007.03406.x
  • 19. Karabulut H, Özalaybey S, Taymaz T, Aktar M, Selvi O, Kocaoğlu A (2003) A tomographic image of the shallow crustal structure in the Eastern Marmara. Geophys Res Lett 30(24):2277. https://doi.org/10.1029/2003GL018074
  • 20. Lewis MA, Ben-Zion Y (2010) Diversity of fault zone damage and trapping strıctures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms. Geophysical J Int 183(3):1579–1595. https://doi.org/10.1111/j.1365-246X.2010.04816.x
  • 21. Li YG, Leary PC (1990) Fault zone trapped seismic waves. BSSA 80(5):1245–1271
  • 22. Li YG, Vidale JE (1996) Low-velocity fault-zone guided waves: numerical investigations of trapping efficiency. BSSA 86(2):371–378
  • 23. Li YG, Aki K, Adams D, Hasemi A, Lee WHK (1994) Seismic guided waves trapped in the fault zone of the Landers, California, earthquake of 1992. J Geophys Res 99(B6):11705–11722
  • 24. Li YG, Vidale JE, Aki K, Xu F (2000) Depth-dependent structure of the Landers fault zone from trapped waves generated by aftershocks. J Geophys Res 105(B3):6237–6254. https://doi.org/10.1029/1999JB900449
  • 25. Li YG, Vidale JE, Cochran ES (2004) Low-velocity damaged structure of the San Andreas fault at Parkfield from fault zone trapped waves. Geophys Res Lett 31(12):1–5. https://doi.org/10.1029/2003GL019044
  • 26. Maeda T, Takemura S, Furumura T (2017) OpenSWPC: an open-source integrated parallel simulation code for modeling seismic wave propagation in 3D heterogeneous viscoelastic media. Earth Planets Space 69(102):1–20. https://doi.org/10.1186/s40623-017-0687-2
  • 27. McKenzie D (1972) Active tectonics of the mediterranean region. Geophys J R Astr Soc 30(2):109–1865. https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
  • 28. Mizuno T, Nishigami K (2006) Deep structure of the Nojima fault, southwest Japan, estimated from borehole observations of fault-zone trapped waves. Tectonophysics 417(3):231–247. https://doi.org/10.1016/j.tecto.2006.01.003
  • 29. Özalaybey S, Zor E, Ergintav S, Tapırdamaz MC (2011) Investigation of 3-D basin structures in the İzmit Bay area (Turkey) by single-station microtremor and gravimetric methods. Geophys J Int 186(2):883–894. https://doi.org/10.1111/j.1365-246X.2011.05085.x
  • 30. Peng Z, Ben-Zion Y (2006) Temporal changes of shallow seismic velocity around the Karadere-Düzce branch of the North Anatolian fault and strong ground motion. Pure Apply Geophys 163:567–600. https://doi.org/10.1007/s00024-005-0034-6
  • 31. Peng Z, Ben-Zion Y, Michael AJ, Zhu L (2003) Quantitative analysis of seismic fault zone waves in the rupture zone of the 1992 Landers, California, earthquake: evidence for a shallow trapping structure. Geophys J Int 155(3):1021–1041. https://doi.org/10.1111/j.1365-246X.2003.02109.x
  • 32. Spudich P, Olsen KB (2001) Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California. Geophys Res Lett 28(13):2533–2536. https://doi.org/10.1029/2000GL011902
  • 33. U.S. Geological Survey (2021) Earthquake lists, maps, and statistics. https://www.usgs.gov/natural-hazards/earthquake-hazards/lists-maps-and-statistics. Accessed 18 July 2021
  • 34. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans EOS 79(47):579–579. https://doi.org/10.1029/98EO00426
  • 35. Zor E, Özalaybey S, Karaaslan A, Tapırdamaz MC, Özalaybey SÇ, Tarancıoğlu A, Erkan B (2010) Shear wave velocity structure of the İzmit Bay area (Turkey) estimated from active-passive array surface wave and single-station microtremor methods. Geophys J Int 182(3):1603–1618. https://doi.org/10.1111/j.1365-246X.2010.04710.x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acae6858-8d69-40f0-8e86-cb8c36f88a2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.