PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insight into Damping Sources in Turbines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Blade vibrations in aircraft engines are a significant challenge that must be overcome during the design and development of modern turbine engines. Vibrations lead to cyclic displacements and result in alternating stress and strain in undesired environments (high temperatures, erosion, corrosion of the surface, etc.). Under resonance conditions, stress amplitudes can increase and exceed their safety limits, and in extreme cases, can lead to engine failure. One method to reduce resonance vibrations is to increase damping in the turbine assembly. This paper presents and describes vibration damping sources in the turbine, including aerodynamic, material, and friction damping. Additionally, typical damping values for each damping component are presented and compared.
Rocznik
Tom
Strony
69--82
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wzory
Twórcy
  • Łukasiewicz Research Network, Institute of Aviation, Al. Krakowska 110/114 Warsaw, Poland
Bibliografia
  • ANSI. (1998). Single cantilever beam method for measuring the dynamic mechanical properties of viscoelastic materials. (S2.23-1998).
  • ASTM. (1998). Test method for measuring vibration-damping properties of materials (E756-98).
  • Braun, S., Ewins, D. J., & Rao, S. S. (2002). Encyclopedia of vibration. (G. Simon, Ed.). Academic Press.
  • Brown, W. G. (1981). Determination of damping values for turbine blades. Proceedings of the Design Engineering Technical Conference, Article ASME Paper 81-DET-131.
  • Csaba, G. (1998). Modelling microslip friction damping and its influence on turbine blade vibrations [PhD dissertation, Linköping University]. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-181151
  • Csaba, G. & Andersson, M. (1997). Optimization of friction damper weight, simulation and experiments, presented at the ASME TurboExpo 97, Orlando, FL, 97-GT-115, 2-5 June, 1997.
  • Deutsches Institut fuer Normung. (1971). Biegeschwingungsversuch. Bestimmung von kenngroessen schwingungsgeda empfter mehrschichtsysteme (Flexural vibration test. Determination of parameters of vibration-damped multi-layer systems) (DIN Standard 53 440).
  • Director of Flight Safety. (2014). Canadian forces flight safety investigation report (CT155201). DND.
  • Hanson, M. P. (1956). A vibration damper for axial-flow compressor blading. Procedings of the Society for Experimental Stress Analysis, XIV.
  • Hanson, M. P., Mayer, A. J., & Manson, S. S. (1953). A method of evaluating loose-blade mounting as a means of suppressing turbine and compressor blade vibration. Proceedings SESA, 10(2).
  • ISO. (1991). Damping materials: Graphic presentation of complex modulus (ISO 10112:1991).
  • Jachimowicz, J., Karliński, W., & Szachnowski, W. (2000). Blade and disc in-lock co-operation - selected problems. Machine Dynamics Problems, 4(24), 71-86.
  • Jachimowicz, J., Kozłowski, P., Moneta, G., Szymczyk, E., & Kaniowski, J. (2011). Zjawisko frettingu w konstrukcjach lotniczych. Prace Instytutu Lotnictwa, 206, 36-58.
  • Jones, D. I. G., Nashif, A. D., & Stargardter, H. (1975). Vibrating beam dampers for reducing vibrations in gas turbine blades. Transactions of the ASME, Journal of Engineering for Power, 111-116.
  • Kielb, J. J., & Abhari, R. S. (2001). Experimental study of aerodynamic and structural damping in a full-scale rotating turbine. ASME Turbo Expo 2001, Article 2001-GT-0262. https://doi.org/10.1115/2001-GT-0262.
  • Klepacki, W. (1975). Nieklasyczne zagadnienia drgań łopatek turbin lotniczych [Unpublished PhD dissertation]. Instytut Lotnictwa.
  • Klepacki, W. (1978). O pewnej metodzie zmniejszania drgań łopatek turbin lotniczych. Prace Instytutu Lotnictwa, 74, 11-40.
  • Laborenz, J. (2014). Eddy current damping concept for last stage steel blading, 19th Blade Mechanics Seminar. Winterthur.
  • Lampert, P., Szymaniak, M., & Rzadkowski, R. (2004). Unsteady load of partial admission control stage rotor of a large power steam turbine. Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air, Volume 5: Turbo Expo 2004, Parts A and B, Article ASME Paper GT2004-53886. https://doi.org/10.1115/GT2004-53886
  • Lazan, B. J. (1968). Damping of materials and members in structural mechanics. Pergamon Press.
  • Moneta, G. (2019). Damping optimization of turbine blade vibration [Unpublished PhD dissertation]. Warsaw University of technology.
  • Moneta, G., Fedasz, M., Szmidt, M., Cieslak, M., & Krzymien, W. (2022). Advantages of additive manufacturing technology in damping improvement of turbine blading. Proceedings of the 2022 International Additive Manufacturing Conference. 2022 International Additive Manufacturing Conference, Article IAM2022-96752. https://doi.org/10.1115/IAM2022-96752.
  • Moneta, G., Fedasz, M., Szmidt, M., Cieslak, S., & Krzymien, W. (2022). Increasing of damping in the turbine blade through multi-functional design and advantages of additive manufacturing technology. Proceedings of the ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, Volume 8A: Structures and Dynamics - Aerodynamics Excitation and Damping; Bearing and Seal Dynamics, Article GT2022-83889. https://doi.org/10.1115/GT2022-83889.
  • Moneta, G., Jachimowicz, J., Pietrzakowski, M., Doligajski, A., & Szwedowicz, J. (2021). Insight into vibration sources in turbines. Fatigue of Aircraft Structures, 2021(13), 40-53. https://doi.org/10.2478/fas-2021-0005.
  • Pastorius, W. J. (1969). Damping factors in turbine blade vibration (Publication No. 6580) [Electronic Theses and Dissertations, University of Windsor]. https://scholar.uwindsor.ca/etd/6580
  • Rao, J. S. (2011). History of mechanism and machine science. Volume 20. Springer.
  • Salzmann, D.J.C. & van der Tempel, J. (2005). Aerodynamic damping in the design of support structures for offshore wind turbines. Offshore Wind Energy Conference, Copenhagen, Dennmark, 26-28 October, 2005.
  • Schmid, R. (1962). Resonanzverhalten und Schwingungssicherheit der Schaufeln von Turbomaschinen. Maschinenbautechnik, 11(Heft 12).
  • Scott-Emuakpor, O., Beck, J., Runyon, B., & George, T. (2021). Determining unfused powder threshold for optimal inherent damping with additive manufacturing. Additive Manufacturing, 38, 101739. https://doi.org/10.1016/j.addma.2020.101739.
  • Srinivasan, A. V. (1997). Flutter and resonant vibration characteristics of engine blades: An IGTI scholar paper. Proceedings of the ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, Volume 4: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagn, Article 97-GT-533. https://doi.org/10.1115/97-GT-533.
  • Szwedowicz, J. (2012). Bladed disks: Non-linear dynamics, structural design of aircraft engines. Article RTO-AVT-207-09.
  • Szwedowicz, J., Secall-Wimmel, T., & Dünck-Kerst, P. (2008). Damping performance of axial turbine stages with loosely assembled friction bolts: The nonlinear dynamic assessment. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power, 130, Article 032505.
  • Wdowiński, W., Szymczyk, E., Jachimowicz, J., & Moneta, G. (2017). Design and strength analysis of curved-root concept for compressor rotor blade in gas turbine. Fatigue of Aircraft Structures, 2017(9), 137-155. https://doi.org/10.1515/fas-2017-0011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acaaa730-af05-49e9-9f73-eda08aba79a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.