PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics of C2µ derived from ultrasonic anemometer in an urban boundary layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fast-response observations of three components of wind and air temperature have been applied to calculate the refractive index function coefficient (C2µ ), which is needed to describe optical wave propagation in a turbulent medium. These were measured by 3D ultrasonic anemometer installed on the roof of the building of Atmospheric Science Department which is 19 m above ground level. Refractive index function coefficient was calculated for various periods of three seasons: winter, spring and summer.Diurnal variations of (C2µ) have been made at the surface layer for these seasons. The results show that high values ofmean (C2µ) occurred during the day time more than at night, also they occurred more in summer than in winter and spring. The results of (Cµ2) found to change with atmospheric stability, whereas they inversely decrease under unstable conditions, approximately constant at neutral cases, and increase under stable conditions. Values of (C2µ) on average appears to be lower during the rainy and foggy weather cases compared to those of clear sky.
Rocznik
Strony
14--24
Opis fizyczny
Bibliogr. 16 poz., tab., wykr., zdj.
Twórcy
  • Atmospheric Science Department, College of Science, Palestine Street, P.O. Box 14022 Mustansiriyah University, Baghdad, Iraq
  • Atmospheric Science Department, College of Science, Palestine Street, P.O. Box 14022 Mustansiriyah University, Baghdad, Iraq e-mail: mhaljiboori@gmail.com
Bibliografia
  • Al-Jiboori, M.H., Xu, Y.M. & Qian, Y.F. (2002). Local similarity relationships in the urban boundary layer. Boundary-Layer Meteorology, 102(1), 63-82.
  • Altowij, K.S., Alkholidi, A. & Habib, H. (2010). Effect of clear atmospheric turbulence on quality of free space optical communications in Yemen. Frontiers of Optoelectronics in China, 3(4), 423-428.
  • Beland, R.R. (1993). Propagation through atmospheric optical turbulence. The infrared and electro-optical systems handbook (pages 157-232). Bellingham, Washington’ DC: MI and SPIE Engineering.
  • Canuet, L. (2014). Atmospheric turbulence profile modeling for satellite-ground laser communication (master thesis). Barcelona: Universitat Politêcnica de Catalunya [manuscript].
  • Fried, D.L. (1965). Statistics of a geometrical representation of wave front distortion. Journal of the Optical Society of America, 55, 1427- -1435.
  • Hagelin, S., Masciadri, E. & Lascaux, F. (2005). Optical turbulence the influence of the atmosphere on ground–based astronomy. Earth Sciences. Uppsola: University.
  • Henniger, H. & Wilfert, O. (2010). An introduction to free-space optical communications. Radioengineering, 19, 203-212.
  • Hulett, H.R. (1967). Turbulence limitation in photographic resolution of planet surfaces. Journal of the Optical Society of America, 57, 1335-1338.
  • Ishimaru, A. (1997). Wave propagation and scattering in random media. New York: IEEE Press and Oxford University Press.
  • Panofsky, H. & Dutton, J. (1984). Atmospheric turbulence: models and methods for engineering applications. Hoboken, NJ: John Wiley and Sons.
  • Prokeš, A. (2009). Modeling of atmospheric turbulence effecton terrestrial FSO link. Radio Engineering, 18, 42-47.
  • Roadcap, J.R. & Tracy, P. (2009). A preliminary comparison of daylit and night Cμ2 profiles measured by thermosonde. Radio Science, 44. doi: 10.1029/2008RS00392
  • Romain, D., Larkin, M., Ghayel, G., Paulson, B. & Nykolak, G. (2001). Optical wireless propagation: theory vs. experiment. Optical Wireless Communications III, Proc. SPIE, 4214.
  • Walters, D.L., Kunket, K.E. & Hoidale, G.B. (1981). Diurnal and seasonal variations in the atmospheric structure parameter (Cμ2 ) that affect the atmospheric modulation transfer function (MTF). Atmospheric Transmission, 277, 6-9.
  • Wesely, M.L. & Alcaraz, E.C. (1973). Diurnal cycles of the refractive index structure function coefficient. Journal of Geophysical Research, 78, 6224-6232.
  • Zhu, X.M. & Kahn, J.M. (2002). Free-space optical communication throughatmospheric turbulence channels. IEEE Transactions on Communications, 50, 1293-1300.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-acaa7e78-5bfc-4c8b-b9e4-9f9602d9875f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.