PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seminarium z teorii potencjału procesów stochastycznych na Politechnice Wrocławskiej

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Niniejszy artykuł, przedstawia dokonania i drogę badawczą grupy Tomasza Byczkowskiego, zajmującą się probabilistyką na przestrzeniach liniowych i grupach.
Rocznik
Strony
257--290
Opis fizyczny
Bibliogr. 95 poz.
Twórcy
  • Instytut Matematyczny PAN, Polska
autor
  • Wydział Matematyki Politechniki Wrocławskiej, Wrocław, Polska
Bibliografia
  • [1] A. de Acosta, Stable measures and seminorms, Ann. Probab. 3 (1975), 865-875.
  • [2] A. de Acosta, Asymptotic behavior of stable measures, Ann. Probab. 5 (1977), 494-499.
  • [3] L. Alili, L. Chaumont, P. Graczyk, T. Żak, Inversion, duality and Doob h-transforms for self-similar Markov processes, Electron. J. Probab. 22 (2017), paper no. 20.
  • [4] A. Ancona, Principe de Harnack à la frontière et theorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien, Ann. Inst. Fourier 28 (1978), 169-213 (French, with English summary).
  • [5] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1997). 43-80.
  • [6] K. Bogdan, Representation of a-harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), 227-243.
  • [7] K. Bogdan, T. Byczkowski, Probabilistic proof of boundary Harnack principle for a-harmonic functions, Potential Anal. 11 (1999), 135-156.
  • [8] K. Bogdan, K. Burdzy, Z-Q. Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), 89-152.
  • [9] K. Bogdan, T. Byczkowski, Potential theory for the α-stable Schrdinger operator on bounded Lipschitz domains, Studia Math. 133 (1999), 53-92.
  • [10] K. Bogdan, T. Byczkowski, Potential theory of Schrödinger operator based on fractional Laplacian, Probab. Math. Statist. 20 (2000), 293-335.
  • [11] K. Bogdan, B. Dyda, P. Kim, Hardy inequalities and non-explosion results for semigroups, Potential Anal. 44 (2016), 229-247.
  • [12] K. Bogdan, T. Jakubowski, Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Comm. Math. Phys. 271 (2007), 179-198.
  • [13] K. Bogdan, T. Grzywny, M. Ryznar, Heat kernel estimates for the fractional Laplacian with Dirichlet conditions, Ann. Probab. 38 (2010), 1901-1923.
  • [14] K. Bogdan, T. Grzywny, M. Ryznar, Density and tails of unimodal convolution semigroups, J. Funct. Anal. 266 (2014), 3543-3571.
  • [15] K. Bogdan, T. Grzywny, M. Ryznar, Barriers, exit time and survival probability for unimodal Lévy processes, Probab. Theory Related Fields 162 (2015), 155-198.
  • [16] K. Bogdan, T. Grzywny, M. Ryznar, Dirichlet heat kernel for unimodal Lévy processes,Stoch. Proc. Appl. 124 (2014), 3612-3650.
  • [17] K. Bogdan, A. Stós, P. Sztonyk, Harnack inequality for stable processes on d-sets, Studia Math. 158 (2003), 163-198.
  • [18] K. Bogdan, P. Sztonyk, Estimates of potential kernel and Harnack’s inequality for anisotropic fractional Laplacian, Stud. Math. 181 (2007), 101-123.
  • [19] K. Bogdan, T. Kulczycki, M. Kwaśnicki, Estimates and structure of α-harmonic functions, Probab. Theory Related Fields 140 (2008), 345-381.
  • [20] K. Bogdan, T. Kumagai, M. Kwaśnicki, Boundary Harnack inequality for Markov processes with jumps, Transactions AMS 367 (2015), 477-517.
  • [21] K. Bogdan, T. Żak, On Kelvin Transformation, J. Theor. Probab. 19 (2006), 89-120.
  • [22] K. Bogus, J. Małecki, Sharp estimates of transition probability density for Bessel process in half-line, Potential Anal. 43 (2015), 1-22.
  • [23] K. Bogus, J. Małecki, Heat kernel estimates for the Bessel differential operator in half-line, Math. Nachr. 289 (2016), 2097-2107.
  • [24] A. N. Borodin, P. Salminen, Handbook on Brownian Motion: Facts and Formulae, Birkhäuser, Basel 2001.
  • [25] T. Byczkowski, Norm convergent expansion for Lp valued Gaussian random elements, Studia Math. 64 (1979), 87-95.
  • [26] T. Byczkowski, T. Żak, Asymptotic properties of semigroups of measures on vector spaces, Ann. Probab. 9 (1981), 211-220.
  • [27] T. Byczkowski, T. Inglot, Gaussian random series on metric vector spaces, Math. Zeitschr. 196 (1987), 39-50.
  • [28] T. Byczkowski, Random series and seminorms, [w:] Proc. First World Congress of Bernoulli Soc., VNU Science Press, Utrecht 1987, 771-774.
  • [29] T. Byczkowski, M. Ryznar, Series of independent vector valued random variables and absolute continuity of seminorms, Math. Scandinavica 62 (1988), 59-74.
  • [30] T. Byczkowski, J. Woś, On infinite products of independent random elements on metric semigroups, Coll. Math. 37 (1977), 271-285.
  • [31] T. Byczkowski, K. Samotij, Absolute continuity of stable seminorms, Ann. Probability 14 (1986), 299-312.
  • [32] T. Byczkowski, P. Graczyk, Malliavin calculus for stable processes on Heisenberg group, Probab. Math. Statist. 13 (1992), 277-292.
  • [33] T. Byczkowski, J. Woś, Equivalence theorems for infinite products of independent random elements on metric semigroups, Coll. Math. 37 (1977), 287-293.
  • [34] T. T. Byczkowski, A. Hulanicki, Gaussian measure of normal subgroups, Ann. Probab. 11 (1983), 685-691.
  • [35] Byczkowski, P. Graczyk, A. Stós, Poisson kernels of half-spaces in real hyperbolic spaces, Revista Matemática Iberoamericana 23 (2007), 85-126.
  • [36] T. Byczkowski, J. Małecki, Poisson kernel and Green function of the ball in real hyperbolic spaces, Potential Anal. 27 (2007), 1-26.
  • [37] T. Byczkowski, J. Małecki, M. Ryznar, Hitting half-spaces by Bessel-Brownian diffusions, Potential Anal. 33 (2010), 47-83.
  • [38] T. Byczkowski, J. Małecki, M. Ryznar, Hitting Times of Bessel Processes, Potential Anal. 38 (2013), 753-786.
  • [39] T. Byczkowski, J. Małecki, M. Ryznar, Bessel potentials, hitting distributions and Green functions, Transactions AMS 361 (2009), 4871-4900.
  • [40] T. Byczkowski, M. Ryznar, Hitting distributions of geometric Brownian motion, Studia Math. 173 (2006), 19-38.
  • [41] L. Chaumont, H. Panti, V. Rivero, The Lamperti representation of real-valued self-similar Markov processes, Bernoulli 9 (2013), 2494-2523.
  • [42] B. S. Cirel’son, The density of the distribution of the maximum of a Gaussian process, Teor. Verojatnost. Primenen. 20 (1975), 567-575 (po rosyjsku).
  • [43] K-L. Chung, Z. Zhao, From Brownian Motion to Schrödinger‘s Equation, Grundlehren der mathematischen Wissenschaften, t. 312, Springer, New York 1995.
  • [44] B. Dahlberg, Estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 275-288.
  • [45] E. B. Davies, Heat kernels and spectral theory, Cambridge University Press, Cambridge 1989.
  • [46] E. B. Davies, B. Simon, Ultracontracive semigroups and some problems in analysis (J. A. Barros, red.), Aspects of Mathematics and its Applictions, Elsevier 1986.
  • [47] T. Downarowicz, Wkład Czesława Ryll-Nardzewskiego w rozwój teorii ergodycznej, Wiad. Mat. 53 (2017), nr 2.
  • [48] B. Dyda, A. Kuznetsov, M. Kwaśnicki, Fractional Laplace operator and Meijer G-function, Constructive Approximation 45 (2017), 427-448.
  • [49] B. Dyda, A. Kuznetsov, M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the unit ball, Journal of the London Mathematical Society 95 (2017), 500-518.
  • [50] P. Graczyk, Malliavin calculus for stable processes on homogeneous groups, Studia Math. 100 (1991), 183-205.
  • [51] P. Graczyk, A. Stós, Transition density estimates for stable processes on symmetric spaces, Pacific Journal of Math. 217 (2004), 87-100.
  • [52] P. Graczyk, T. Luks, M. Rösler, On the Green function and Poisson integrals of the Dunkl Laplacian, Potential Anal. (2017).
  • [53] T. Grzywny, M. Ryznar, Two-sided optimal bounds for Green functions of half-spaces for relativistic α-stable process, Potential Anal. 28 (2008), 201-239.
  • [54] T. Grzywny, M. Kwaśnicki, Potential kernels, probabilities of hitting a ball, harmonic functions and the boundary Harnack inequality for unimodal Lévy processes, Stochastic Process. Appl. 128 (2018), nr 1, 1-38.
  • [55] J. Hoffmann-Jorgensen, R. M. Dudley, L. Shepp, On the Lower Tail of Gaussian Seminorms, Ann. Probab. 7 (1979), 319-342.
  • [56] T. Jakubowski, Fractional Laplacian with singular drift, Studia Math. 207 (2011), 257-273.
  • [57] T. Jakubowski, K. Szczypkowski, Time-dependent gradient perturbations of fractional Laplacian, Journal of Evolution Equations 10 (2010), 319-339.
  • [58] T. Jakubowski, K. Szczypkowski, Estimates of gradient perturbation series, Journal of Mathematical Analysis and Applications 389 (2012), 452-460.
  • [59] K. Kaleta, T. Kulczycki, Intrinsic ultracontractivity for Schrödinger operators based on fractional Laplacians, Potential Anal. 33 (2010), 313-339.
  • [60] K. Kaleta, M. Kwaśnicki, Boundary Harnack Inequality for a-harmonic functions on the Sierpiński triangle, Probab. Math. Stat. 30 (2010), 353-368.
  • [61] K. Kaleta, J. Lörinci, Pointwise eigenfunction estimates and intrinsic ultracontractivity-type properties of Feynman-Kac semigroups for a class of Lévy processes, Ann. Probab. 43 (2015), 1350-1398.
  • [62] K. Kaleta, J. Lörinci, Fall-off of eigenfunctions for nonlocal Schrödinger operators with decaying potentials, Potential Anal. 46 (2017), 647-688.
  • [63] K. Kaleta, J. Lörinci, Transition in the decay rates of stationary distributions of Lévy motion in an energy landscape, Physical Review E 93 (2016).
  • [64] K. Kaleta, P. Sztonyk, Estimates of transition densities and their derivatives for jump Lévy processes, J. Math. Anal. Appl. 431 (2015), 260-282.
  • [65] K. Kaleta, P. Sztonyk, Small time sharp bounds for kernels of convolution semigroups, Journal dAnalyse Mathématique 132 (2017), 355-394.
  • [66] K. Kaleta, K. Pietruska-Paluba, Integrated density of states for Poisson-Schrödinger perturbations of subordinate Brownian motions on the Sierpiński gasket, Stoch. Proc. Appl. 125 (2015), 1244-1281.
  • [67] T. Kulczycki, B. Siudeja, Intrinsic ultracontractivity of the Feynman-Kac semigroup for relativistic stable processes, Transactions AMS 358 (2006), 5025-5057.
  • [68] T. Kulczycki, On concavity of solutions of the Dirichlet problem for the equation(-∆ ½ ɸ = 1 in convex planar regions, Journal of the European Mathematical Society 19 (2017), 1361-1420.
  • [69] T. Kulczycki, M. Kwaśnicki, On high spots of the fundamental sloshing eigenfunctions in axially symmetric domains, Proc. London Math. Soc. 105 (2012), 921-952.
  • [70] N. Kuznetsov, T. Kulczycki, M. Kwaśnicki, A. Nazarov, S. Poborchi, I. Polterovich, B. Siudeja, The legacy of Vladimir Andreevich Steklov, Notices Amer. Math. Soc. 61 (2014), nr 1, 9-22.
  • [71] T. Kulczycki, M. Ryznar, Gradient estimates of harmonic functions and transition densities for Lévy processes, Transactions AMS 368 (2016), 281-318.
  • [72] M. Kwaśnicki, J. Małecki, M. Ryznar, Suprema of Lévy processes, Ann. Probab. 41 (2013), 2047-2054.
  • [73] A. Kyprianou, Deep factorization of stable processes, Electr. J. Probability 21 (2016), nr 23.
  • [74] M. Lewandowski, W. Linde, Real translates of complex measures, Probab. Th. on Vector Spaces IV, Springer Lecture Notes in Math., t. 13911989.
  • [75] M. Lewandowski, M. Ryznar, T. Żak, Anderson inequality is strict for stable measures, Proc. AMS 123 (1995), 3875-3880.
  • [76] T. Luks, Boundary behavior of α-harmonic functions on the complement of the sphere and hyperplane, Potential Anal. 39 (2013), 29-67.
  • [77] D. J. Marcus, Non-stable laws with all projections stable, Z. Wahr. verw. Gebiete 64 (1983), 139-156.
  • [78] H. Matsumoto, Closed form formulae for the heat kernels and the Green functions for the Laplacians on the symmetric spaces of rank one, Bulletin des Sciences Mathématiques 125 (2001), 553-581.
  • [79] K. Michalik, M. Ryznar, Kelvin transform for α-harmonic functions in regular domains, Demonstratio Mathematica 45 (2012), 361-376.
  • [80] K. Michalik, M. Ryznar, Relative Fatou theorem for α-harmonic functions in Lipschitz domains, Illinois J. Math. 48 (2004), 977-998.
  • [81] K. Pietruska-Pałuba, A. Stós, Poincare inequality and Hajlasz-Sobolev spaces on nested fractals,Studia Math. 218 (2013), nr 1, 1-26.
  • [82] G. Pisier, Probabilistic Methods in the Geometry of Banach Spaces, Université Paris 1985.
  • [83] A. Pyć, T. Żak, Transition density of a hyperbolic Bessel process, Electron. Commun. Probab. 21 (2016), nr 50.
  • [84] T. Rolski, W. A. Woyczyński, Wkład Czesława Ryll-Nardzewskiego do teorii prawdopodobieństwa, Wiad. Mat. 53 (2017), nr 2.
  • [85] M. Ryznar, Asymptotic behaviour of stable measures near the origin, Ann. Probab. 14 (1986), 287-298.
  • [86] M. Ryznar, Estimates of Green function for relativistic α-stable process, Potential Anal. 17 (2002), 1-23.
  • [87] M. Ryznar, T. Żak, Exit Time of a Hyperbolic α-Stable Process from a Halfspace or a Ball, Potential Anal. 45 (2016), 83-107.
  • [88] G. Serafin, Potential theory of hyperbolic Brownian motion in tube domains, Colloq. Math. 135 (2014), 27-52.
  • [89] R. Song, J. M. Wu, Boundary Harnack principle for symmetric stable processes, Journal of Funct. Analysis 168 (1999), 403-427.
  • [90] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970.
  • [91] A. Stós, Symmetric stable processes on d-sets, Bull. Pol. Acad. Sci. Math. 48 (2000), 237-245.
  • [92] A. Stós, Boundary Harnack principle for fractional powers of Laplacian on the Sierpiński carpet, Bull. Sci. Math. 130 (2006), 580-594.
  • [93] A. Stós, Stable semigroups on homogeneous trees and hyperbolic spaces, Illinois Journal of Mathematics 55 (2011), 1437-1454.
  • [94] S. R. S. Varadhan, Strassen's Law of the Iterated Logarithm, dostępne pod adresem https://math.nyu.edu/faculty/varadhan/LDP/Spring2010.5.pdf.
  • [95] T. Żak, Poisson kernel and Green function of balls for complex hyperbolic Brownian motion, Studia Math. 183 (2007), 161-193.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aca7e3d4-20e7-4a77-bad4-35c04d516aa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.