Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an analysis of the influence of the fuel injector nozzle holes diameter on parameters of the brake-up, evaporation and combustion process in the cylinder of the marine 4-stroke Diesel engine. Presented analysis was prepared in the basis on computational fluid dynamic model. Initial and boundary conditions of the model as well as data used to model validation were collected during the laboratory study. Calculations were conducted for nominal fuel holes diameter equals 0.375mm and diameters increased and decreased by 50μm and 100μm respectively. According to presented results the increase of the diameter of fuel nozzle holes causes the increase of fuel Sauter’s mean diameter in the initial stage of the injection process and the decrease of fuel process evaporation. The result of this phenomenon is the slowdown of the initial stage of the combustion process and the decrease of both pressure and temperature of combustion.
Czasopismo
Rocznik
Tom
Strony
95--102
Opis fizyczny
Bibliogr. 25 poz., wykr., tab.
Twórcy
autor
- Gdynia Maritime University Department of Engineering Sciences Morska Street 81-87, 81-225 Gdynia, Poland tel.: +48 58 6901434, fax: +48 58 6901399
Bibliografia
- [1] Payri, R., Salvador, F.J., Gimeno, J., Zapata, L.D., Diesel nozzle geometry influence on spray liquid-phase fuel penetration in evaporative conditions, Fuel, Vol.87, No.7, pp. 1165-1176, Elsevier 2008.
- [2] Brusiani, F., Falfari, S., Pelloni, P., Influence of the Diesel Injector Hole Geometry on the Flow Conditions Emerging from the Nozzle. Energy Procedia, Vol.45, pp. 749-758, 2014.
- [3] Park S.W., Reitz R.D., A gas jet superposition model for CFD modeling of group-hole nozzle sprays. Int J Heat Fluid Flow, Vol.30, No.6, pp 1193-1201, 2009.
- [4] Nishida, K., Tian, J., Sumoto, Y., Long, W., Sato, K., Yamakawa, M., An experimental and numerical study on sprays injected from two-hole nozzles for DISI engines, Fuel, Vol.88, No.9, pp.1634-1642, 2009.
- [5] Park, S.W., Reitz, R.D., Optimization of fuel/air mixture formation for stoichiometric diesel combustion using a 2-spray-angle group-hole nozzle, Fuel, Vol.88, No.5, pp.843-852, 2008.
- [6] Sou, A., Hosokawa, S., Tomiyama, A., Effects of cavitation in a nozzle on liquid jet atomization, Int J Heat Mass Transf, Vol.50, No.17–18, pp.3575-3582, 2007.
- [7] Suh, H.K., Lee, C.S., Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics, Int. J Heat Fluid Flow, Vol.29, No.4, pp.1001-1009, 2008.
- [8] Payri, F., Bermúdez, V., Payri, R., Salvador, F.J., The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles, Fuel, Vol.83, No.4–5, pp. 419-431, 2004.
- [9] Soma, S., Longman, D.E., Ramírez, A.I., Aggarwal, S.K., A comparison of injector flow and spray characteristics of biodiesel with petrodiesel, Fuel, Vol.89, pp.4014-4024, 2010.
- [10] Samimi Abianeh, O., Chen, C.P., A discrete multicomponent fuel evaporation model with liquid turbulence effects, Int J Heat Mass Transf, Vol.55, No.23–24, pp.6897-6907, 2012.
- [11] Ejim, C.E., Fleck, B., Amirfazli, A., Analytical study for atomization of biodiesels and their blends in a typical injector: Surface tension and viscosity effects, Fuel, Vol.86, No.10–11, pp.1534-1544, 2007.
- [12] Moon, S., Abo-Serie, E., Bae, C., Air flow and pressure inside a pressure-swirl spray and their effects on spray development, Exp. Therm. Fluid Sci, Vol.33, No.2, pp.222-231, 2009.
- [13] Moon, S., Bae, C., Choi, J., Abo-Serie, E., The influence of airflow on fuel spray characteristics from a slit injector, Fuel, Vol.86, No.3, pp.400-409, 2007.
- [14] Jaworski, P., Kowalski, J., 3D mesh model for RANS numerical research on marine 4-stroke engine, Journal of Polish CIMAC Vol. 9-1,pp.87-94, 2014.
- [15] Zienkiewicz, O. C., Taylor, R. L., Finite Element Method, Vol. 3 - Fluid Dynamics, Fifth Edition, Butterworth-Heinemann, Oxford 2000.
- [16] O’Rourke, P.J. Amsden, A.A., The Tab Method for Numerical Calculation of Spray Droplet Break-up, SAE Paper Technical 872089, SAE International 1987.
- [17] Dukowicz, J.K., Quasi-steady droplet change in the presence of convection, Informal report Los Alamos Scientific Laboratory, LA7997-MS, Los Alamos 1979.
- [18] Poinsot, T., Veynante, D., Theoretical and numerical combustion, Edwards 2005.
- [19] Colin, O., Benkenida, A., The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology - Rev., Vol. 59, No. 6, pp. 593-609 IFP 2004.
- [20] Kowalski, J., Model procesu spalania w 4-suwowym silniku okrętowym, Mechanik, Vol. 10, pp.49-58, 2015.
- [21] Kowalski, J., An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions, Applied Thermal Engineering, Vol.65, pp. 469-476, Elsevier 2014.
- [22] Kowalski, J., An experimental study of emission and combustion characteristics of marine diesel engine in case of cylinder valves leakage, Polish Maritime Research, Vol.22, No.3 pp. 90-98, 2015.
- [23] Aleiferis, P.G., Serras-Pereira, J., Augoye, A., Davies, T.J., Cracknell, R.F., Richardson, D., Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines, Int. J. Heat. Mass. Transf, Vol.53, No.21–22, pp. 4588-4606, Elsevier 2010.
- [24] Fang, T., Coverdill, R.E., Lee, C-F.F., White, R. A., Influence of injection parameters on the transition from PCCI combustion to diffusion combustion in a small-bore HSDI diesel engine. Int. J. Automot. Technol, Vol.10, No.3, pp. 285-295, Elsevier 2009.
- [25] Gan, S., Ng, H.K., Pang, K.M., Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines, Applied Energy, Vol.88, No.3, pp.559-567, 2011.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aca5f59f-d3f5-4002-af4d-ab3d6cfaf15a