PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal Method for Polarization Selection of Stationary Objects Against the Background of the Earth’s Surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Within the maximum likelihood method an optimal algorithm for polarization target selection against the background of interfering signal reflected from the earth’s surface is synthesized. The algorithm contains joint operations of spectral interference rejection and their polarization compensation by means of certain combinations of interchannel subtraction of signals of different polarizations. The physical features of the elements of the polarization scattering matrix are investigated for the technical implementation of the synthesized algorithm.
Twórcy
  • Department of Aerospace Radio-Electronic Systems National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
autor
  • Department of Aerospace Radio-Electronic Systems National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Department of Aerospace Radio-Electronic Systems National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Department of Aerospace Radio-Electronic Systems National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Department of Aerospace Radio-Electronic Systems National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Department of Radio-Electronic and Biomedical Computerized Means and Technologies National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Laboratory of Electron Microscopy, Optics, and Laser Technologies National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Aircraft Control Systems Department National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Aircraft Control Systems Department National Aerospace University H.E. Zhukovsky ”Kharkiv Aviation Institute”, Ukraine
  • Air Navigation Systems Department National Aviation University, Ukraine
  • Air Navigation Systems Department National Aviation University, Ukraine
  • Air Navigation Systems Department National Aviation University, Ukraine
  • Air Navigation Systems Department National Aviation University, Ukraine
  • Department of Telecommunication and Radioelectronic Systems National Aviation University, Ukraine
  • Department of Telecommunication and Radioelectronic Systems National Aviation University, Ukraine
  • Magnetic Field Control Problems Department, State Institution “Institute of Technical Problems of Magnetism of the National Academy of Sciences of Ukraine”, Ukraine
  • Technical Disciplines Department, Kharkiv National Automobile and Highway University, Ukraine
Bibliografia
  • [1] H. Oriot and M. Flecheux, ”Moving target detection using 2 SAR images,” 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 2017, pp. 1064-1068, https://doi.org/10.1109/RADAR.2017.7944362.
  • [2] H. Xu, Z. Yang, R. Zhang and G. Liao, ”Shadow-aided method for ground slow moving targets detection of airborne high-resolution SAR images,” 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, 2015, pp. 831-834, https://doi.org/10.1109/APSAR.2015.7306332.
  • [3] T. Leonard, T. Lamont-Smith, R. Hodges and P. Beasley, ”94-GHz Tarsier radar measurements of wind waves and small targets,” 2011 8th European Radar Conference, Manchester, UK, 2011, pp. 73-76.
  • [4] Y. Zhang et al., ”Demonstration of ocean target detection by Tiangong-2 interferometric imaging radar altimeter,” 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 2018, pp. 261-264, https://doi.org/10.23919/MIKON.2018.8405194.
  • [5] Chao-Hsiang Liao, Li-Der Fang, Powen Hsu and Dau-Chyrh Chang, ”A UWB microwave imaging radar system for a small target detection,” 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, CA, USA, 2008, pp. 1-4, https://doi.org/10.1109/APS.2008.4619667.
  • [6] J. Moulton, S. Kassam, F. Ahmad, M. Amin and K. Yemelyanov, ”Target and change detection in synthetic aperture radar sensing of urban structures,” 2008 IEEE Radar Conference, Rome, Italy, 2008, pp. 1-6, https://doi.org/10.1109/RADAR.2008.4721104.
  • [7] C. Debes, A. M. Zoubir and M. G. Amin, ”Enhanced Detection Using Target Polarization Signatures in Through-the-Wall Radar Imaging,” in IEEE Transactions on Geoscience and Remote Sensing, vol. 50, no. 5, pp. 1968-1979, May 2012, https://doi.org/10.1109/TGRS.2011.2170077.
  • [8] X. Mou, X. Chen, J. Guan, B. Chen and Y. Dong, ”Marine Target Detection Based on Improved Faster R-CNN for Navigation Radar PPI Images,” 2019 International Conference on Control, Automation and Information Sciences (ICCAIS), Chengdu, China, 2019, pp. 1-5, https://doi.org/10.1109/ICCAIS46528.2019.9074588.
  • [9] Z. Xu, C. Fan, S. Cheng, J. Wang and X. Huang, ”A Distribution Independent Ship Detector for PolSAR Images,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, https://doi.org/10.1109/JSTARS.2021.3068843.
  • [10] J. Bai, S. Li, L. Huang and H. Chen, ”Robust Detection and Tracking Method for Moving Object Based on Radar and Camera Data Fusion,” in IEEE Sensors Journal, https://doi.org/10.1109/JSEN.2021.3049449.
  • [11] V.K. Volosyuk and V.F. Kravchenko, ”Statistical Theory of Radio Engineering Systems of Remote Sensing and Radar” in, Moscow: Fizmatlit, 2008.
  • [12] V. K. Volosyuk and S. S. Zhyla, ”Optimal radar cross section estimation in synthetic aperture radar,” 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kyiv, UKraine, 2017, pp. 189-193, https://doi.org/10.1109/UKRCON.2017.8100471.
  • [13] V. K. Volosyuk, S. S. Zhyla, M. O. Antonov and O. A. Khaleev, ”Optimal acquisition mode and signal processing algorithm in syntetic aperture radar,” 2017 IEEE 37th International Conference on Electronics and Nanotechnology (ELNANO), Kiev, 2017, pp. 511-516, https://doi.org/10.1109/ELNANO.2017.7939804.
  • [14] V. Volosyuk, S. Zhyla, N. Ruzhentsev, E. Tserne, D. Kolesnikov and D. Vlasenko, ”Optimal Method of RCS Estimation in Synthetic Aperture Radar with Linear Antenna Array,” 2020 IEEE Ukrainian Microwave Week (UkrMW), Kharkiv, Ukraine, 2020, pp. 1-6, https://doi.org/10.1109/UkrMW49653.2020.9252648.
  • [15] Futatsumori, S., Morioka, K., Kohmura, A., Shioji, M. and Yonemoto, N., ”Evaluation of polarisation characteristics of power-line RCS at 76 GHz for helicopter obstacle detection”, Electron. Lett., 51: 1110-1111 (2015).
  • [16] Shunichi Futatsumori, Capucine Amielh, Kazuyuki Morioka, Akiko Kohmura, Norihiko Miyazaki, et al.., ”Investigation of circular polarization for 76 GHz helicopter collision avoidance radar to improve detection performance of high-voltage power lines”, EURAD 2017, 14th European Microwave Conference, Nuremberg, Germany. Pages 295-298 (2017).
  • [17] K. Sarabandi and Moonsoo Park, ”A radar cross-section model for power lines at millimeter-wave frequencies,” in IEEE Transactions on Antennas and Propagation, vol. 51, no. 9, pp. 2353-2360, Sept. 2003, https://doi.org/10.1109/TAP.2003.816380.
  • [18] Ya. D. Shirman, ”Resolution and Compression of Signals”, Sov. Radio, Moscow, 1974.
  • [19] Ya. D. Shirman, ”Radioelectronic Systems: Design Foundations and Theory, 2nd ed.”, Radiotekhnika, Moscow, 2007.
  • [20] Ya. D. Shirman, ”Statistical analysis of optimum resolution”, Radio Engineering and Electronics, 6 (8), pp. 1237-1249 (1961).
  • [21] V. K. Volosyuk, V. V. Pavlikov and S. S. Zhyla, ”Phenomenological Description of the Electromagnetic Field and Coherent Images in Radio Engineering and Optical Systems”, 2018 IEEE 17th International Conference on Mathematical Methods in Electromagnetic Theory (MMET), pp. 302-305, 2018. https://doi.org/10.1109/MMET.2018.8460321.
  • [22] V. K. Volosyuk, S. S. Zhila and D. V. Kolesnikov, ”Phenomenological description of coherent radar images based on the concepts of the measure of set and stochastic integral”, Telecommunications and Radio Engineering (English Translation of Elektrosvyaz and Radiotekhnika), vol. 78, no. 1, pp. 19-30, 2019. https://doi.org/10.1615/TelecomRadEng.v78.i1.30.
  • [23] A. Ishimaru, ”SWave Propagation and Scattering in Random Media”, New York, Academic Press, 1978.
  • [24] Ya. D. Shirman, ”Theoretical Foundations of Radar”, Sovetskoe radio, Moscow, 1970.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-aca3cf6a-19b0-4962-9148-e267ccf058a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.