PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dobry amyloid β? Właściwości chemiczne peptydów Aβ4-x wskazują na ich znaczenie biologiczne

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Good β-amyloid? Chemical properties of Aβ4-x peptides indicate their biological relevance
Języki publikacji
PL
Abstrakty
EN
Alzheimer’s Disease is a neurodegenerative condition, an irreversible progressive dementia caused by death of neurons in brain structures responsible for memory related processes. Despite many years of research and numerous trials, no therapy succeeded that could stop the development of this disease, which affects tens of millions of patients worldwide. The amyloid cascade prevails among a variety of possible mechanisms of its development proposed in the scientific literature. It proposes that death of neurons, preceded by dysfunction of their synaptic activity is caused by the incremental formation of structures (fibrils, oligomers) composed of Aβ peptides. In its copper variant the processes of aggregation and oxidative stress, causing the inflammation and neuronal damage are related to the formation of reactive Cu(II) complexes with Aβ peptides. Aβ peptides are a family of molecules with similar amino acid sequences, differing mainly by the presence of longer or shorter terminal sequences. Their physiological role of is unclear. Aβ1-42 and Aβ1-40 have been mostly studied, but most studies have ignored a very abundant N-terminally truncated species Aβ4-42. We recognized it, and more gene-rally the Aβ4-x peptide family as potentially strong Cu(II) ligands, due to the presence at their N-termini of the Phe-Arg-His amino acid sequence, comprising the ATCUN/NTS structural motif. This observation was followed by vigorous research performed in our laboratory. We studied the ability of Aβ4-x peptides to bind Cu(II) ions, their electrochemical properties and redox reactivity, interactions with proteins which bind copper under physiological conditions, their aggregation properties in the Cu(II) presence and susceptibility to proteolysis. Additionally, we investigated their interaction with a molecule of a therapeutic potential. We demonstrated that Aβ4-x peptides can be primary copper bin-ding agents in extracellular spaces in the brain, able to instantaneously intercept copper from Aβ1-x peptides studied so far. Cu(II) complexes of Aβ4-x peptides are highly resistant to oxidation and reduction, release copper ions to other molecules slowly and reluctantly, and do not produce reactive oxygen species. In accordance with these properties we proposed a physiological role for the Aβ4-42 peptide as a molecule cleansing the synaptic cleft from Cu2+ ions and thereby assuring the correct neurotransmission. This function can however be disturbed by an inappropriate pharmacological intervention. The results of studies of the effect of cupric ions on the aggregation and membrane interactions of the Aβ4-40 peptides suggest that copper can inhibit the Aβ4-x peptides toxicity, thereby providing an additional support for our concept. Studies of hydrolysis of Aβ peptides and properties of its products revealed a possibility for a significant role of short fragments in the brain copper physiology. Our hypothesis awaits verification by biological studies. The issue of metabolism of the studied complexes is a key issue remaining to be solved.
Rocznik
Strony
351--366
Opis fizyczny
Bibliogr. 74 poz.,schem.
Twórcy
autor
  • Instytut Biochemii i Biofizyki PAN, ul. Pawińskiego 5a, 02-106 Warszawa
Bibliografia
  • [1] Alzheimer’s Disease International, World Alzheimer report 2018, https://www.alz.co.uk/research/ WorldAlzheimerReport2018.pdf?2
  • [2] Alzheimer’s Association, 2018 Alzheimer’s Disease Facts and Figures, https://www.alz.org/media/ Documents/facts-and-figures-2018-r.pdf
  • [3] M.L. Haaksma, L.R. Vilela, A. Marengoni, A. Calderón-Larrañaga, J.S. Leoutsakos, M.G.M. Olde Rikkert, R.J.F. Melis, PLoS One, 2017, 12, e0177044.
  • [4] P.K. Panegyres, H.-Y. Chen, Am. J. Neurodeg. Dis., 2013, 2, 300.
  • [5] K. Ritchie, I. Carrière, C. Berr, H. Amieva, J.F. Dartigues, M.L. Ancelin, C.W. Ritchie, J. Clin. Psy-chiatry, 2016, 77, e305.
  • [6] J. Dorszewska, M. Prendecki, A. Oczkowska, M. Dezor, W. Kozubski, Curr. Alz. Res., 2016, 13, 952.
  • [7] K.V. Nguyen, Biomol. Concepts, 2015, 6, 11.
  • [8] S. Thordardottir, A. Kinhult Ståhlbom, O. Almkvist, H. Thonberg, M. Eriksdotter, H. Zetterberg, K. Blennow, C. Graff, Alzheimers Res. Ther., 2017, 9, 9.
  • [9] C.L. Masters, D.J. Selkoe, Cold Spring Harbor Perspect. Med., 2012, 2, a006262.
  • [10] G.P. Morris, I.A. Clark, B. Vissel, Acta Neuropath. Comm., 2014, 2, 135.
  • [11] A. Copani, Eur. J. Pharmacol., 2017, 817, 71.
  • [12] A.D. Watt, V.L. Villemagne, K.J. Barnham, J. Alzheimers Dis., 2013, 33, S283.
  • [13] L. Miller, Q. Wang, T. Telivala, R. Smith, A. Lanzirotti, J. Miklossy, J. Struct. Biol., 2006, 155, 30.
  • [14] J.A. Duce, A.I. Bush, P.A. Adlard, Future Neurol., 2011, 6, 641.
  • [15] C. Cheignon, M. Tomas, D. Bonnefont-Rousselot, P. Faller, C. Hureau, F. Collin, Redox Biol., 2018, 14, 450.
  • [16] K. Reybier, S. Ayala, B. Alies, J. V. Rodrigues, S. Bustos Rodriguez, G. La Penna, F. Collin, C.M. Gomes, C. Hureau, P. Faller, Angew. Chem. Int. Ed., 2016, 55, 1085.
  • [17] J. Everett, J.F. Collingwood, V. Tjendana-Tjhin, J. Brooks, F. Lermyte, G. Plascencia-Villa, I. Hands--Portman, J. Dobson, G. Perry, N.D. Tellinga, Nanoscale, 2018, 10, 11782.
  • [18] P.A. Adlard, A.I. Bush, Front Psychiatry, 2012, 3, 15.
  • [19] P.A. Adlard, A.I. Bush, J. Alzheimers Dis., 2018, 62, 1369.
  • [20] S.C. Drew, Front. Neurosci., 2017, 11, 317.
  • [21] U.C. Müller, T. Deller, M. Korte, Nat. Rev. Neurosci., 2017, 18, 281.
  • [22] Y.-Q. Wang, D.-H. Qu, K. Wang, Eur. Rev. Med. Pharmacol. Sci., 2016, 20, 2389.
  • [23] E. Portelius, N. Bogdanovic, M. K. Gustavsson, I. Volkmann, G. Brinkmalm, H. Zetterberg, B. Winblad, K. Blennow, Acta Neuropathol., 2010, 120, 185.
  • [24] H. Lewis, D. Beher, N. Cookson, A. Oakley, M. Piggott, C.M. Morris, E. Jaros, R. Perry, P. Ince, R.A. Kenny, C.G. Ballard, M.S. Shearman, R.N. Kalaria, Neuropathol. Appl. Neurobiol., 2006, 32, 103.
  • [25] E. Cabrera, P. Mathews, E. Mezhericher, T.G. Beach, J. Deng, T.A. Neubert, A. Rostagno, J. Ghiso, Biochim. Biophys. Acta, 2018, 1864, 208.
  • [26] S. Janelidze, H. Zetterberg, N. Mattsson, S. Palmqvist, H. Vanderstichele, O. Lindberg, D. van Westen, E. Stomrud, L. Minthon, K. Blennow, O. Hansson, Ann. Clin. Transl. Neurol., 2016, 3, 154.
  • [27] C.L. Masters, G. Simms, N.A. Weinman, G. Multhaup, B.L. McDonald, K. Beyreuther, Proc. Natl. Acad. Sci. U.S.A., 1985, 82, 4245.
  • [28] C.L. Masters, G. Multhaup, G. Simms, J. Pottgiesser, R.N. Martins, K. Beyreuther, EMBO J., 1985, 4, 2757.
  • [29] J. Dunys, A. Valverde, F. Checler, J. Biol. Chem., 2018, 293, 15419.
  • [30] K. Dietrich, Y. Bouter, M. Müller, T.A. Bayer, Molecules, 2018, 23, 718.
  • [31] H. Eury, C. Bijani, P. Faller, C. Hureau, Angew. Chem. Int. Ed. Engl., 2011, 50, 901.
  • [32] C. Hureau, P. Faller, Coord. Chem. Rev., 2012, 256, 2175.
  • [33] S.C. Drew, K.J. Barnham, Acc. Chem. Res., 2011 44, 1146.
  • [34] J.L. Jankowsky, H. Zheng, Mol. Neurodegener., 2017, 12, 89.
  • [35] I. Zawisza, M. Rózga, W. Bal, Coord. Chem. Rev., 2012, 256, 2297.
  • [36] M. Rózga, M. Kłoniecki, M. Dadlez, W. Bal, Chem. Res. Toxicol., 2010, 23, 336.
  • [37] M. Novo, S. Freire, W. Al-Soufi, Sci. Rep., 2018, 8, 1783.
  • [38] S.C. Drew, K.J. Barnham, Acc. Chem. Res., 2011, 44, 1146.
  • [39] B. Alies, H. Eury, C. Bijani, L. Rechignat, P. Faller, C. Hureau, Inorg. Chem., 2011, 50, 11192.
  • [40] B. Alies, E. Renaglia, W. Bal, P. Faller, C. Hureau, Anal. Chem., 2013, 85, 1501.
  • [41] T.R. Young, A. Kirchner, A.G. Wedd, Z. Metallomics, 2014, 6, 505.
  • [42] C. Cheignon, M. Jones, F. Atrián-Blasco, I. Kieffer, P. Faller, F. Collin, C. Hureau, Chem Sci., 2017, 8, 5107.
  • [43] M. Rózga, M. Sokołowska, A.M. Protas, W. Bal, J. Biol. Inorg. Chem., 2007, 12, 913.
  • [44] E. Artells, O. Palacios, M. Capdevila, S. Atrian, FEBS J., 2014, 281, 1659.
  • [45] L. Perrone, E. Mothes, M. Vignes, A. Mockel, C. Figueroa, M.C. Miquel, M.L. Maddelein, P. Faller, Chembiochem., 2010, 11, 110.
  • [46] G. Meloni, V. Sonois, T. Delaine, L. Guilloreau, A. Gillet, J. Teissie, P. Faller, M. Vasak, Nat. Chem. Biol., 2008, 4, 366.
  • [47] N. Camerman, A. Camerman, B. Sarkar, Can. J. Chem., 1976, 54, 1309.
  • [48] C. Hureau, H. Eury, R. Guillot, C. Bijani, S. Sayen, P.-L. Solari, E. Guillon, P. Faller, P. Dorlet, Chem. Eur. J., 2011, 17, 10151.
  • [49] V.A. Streltsov, R.S.K. Ekanayake, S.C. Drew, C.T. Chantler, S.P. Best, Inorg. Chem., 2018, 57, 11422.
  • [50] H. Sigel, R.B. Martin, Chem. Rev., 1982, 82, 385.
  • [51] H. Kozłowski, W. Bal, M. Dyba, T. Kowalik-Jankowska, Coord. Chem. Rev., 1999, 184, 319.
  • [52] C. Harford, B. Sarkar, Acc. Chem. Res., 1997, 30, 123.
  • [53] P. Gonzalez, K. Bossak, E. Stefaniak, C. Hureau, I. Raibaut, W. Bal, P. Faller, Chem. Eur. J., 2018, 24, 8029.
  • [54] W. Bal, M.I. Djuran, D.W. Margerum, E.T. Gray, Jr., M.A. Mazid, R.T. Tom, E. Nieboer, P.J. Sadler, J. Chem. Soc., Chem. Comm., 1994, 1889.
  • [55] S.L. Best, T.K. Chattopadhyay, M.I. Djuran, R.A. Palmer, P.J. Sadler, I. Sóvágó, K. Varnagy, J. Chem. Soc., Dalton Trans., 1997, 2587.
  • [56] A. Kolozsi, A. Jancsó, N.V. Nagy, T. Gajda, J. Inorg. Biochem., 2009, 103, 940.
  • [57] D. Płonka, W. Bal, Inorg. Chim. Acta, 2018, 472, 76.
  • [58] W. Bal, M. Sokołowska, E. Kurowska, P. Faller, Biochim. Biophys. Acta Gen. Subj., 2013, 1830, 5444.
  • [59] M. Mital, N.E. Wezynfeld, T. Frączyk, M.Z. Wiloch, U.E. Wawrzyniak, A. Bonna, C. Tumpach, C.L. Haigh, K.J. Barnham, W. Bal, S.C. Drew, Angew. Chem. Int. Ed., 2015, 54, 10460.
  • [60] M.Z. Wiloch, U.E. Wawrzyniak, I. Ufnalska, A. Bonna, W. Bal, S.C. Drew, W. Wróblewski, J. Electrochem. Soc., 2016, 163, G196.
  • [61] F. Licastro, M.C. Morini, L.J. Davis, R. Biagi, L. Prete, G. Savorani, Adv. Biosci. (Oxford), 1993, 87, 283.
  • [62] R.H. Christenson, P. Behlmer, J.F. Howard, Jr., J.B. Winfield, L.M. Silverman, Clin. Chem., 1983, 29, 1028.
  • [63] Y. Irie, W. M. Keung, Biochem. Biophys. Res. Commun., 2001, 282, 416.
  • [64] N. E. Wezynfeld, E. Stefaniak, K. Stachucy, A. Drozd, D. Płonka, S. C. Drew, A. Krężel, W. Bal, Angew. Chem. Int. Ed., 2016, 55, 8235.
  • [65] G. Meloni, V. Sonois, T. Delaine, L. Guilloreau, A. Gillet, J. Teissie, P. Faller, M. Vasak, Nat. Chem. Biol., 2008, 4, 366.
  • [66] A. Santoro, N. Wezynfeld, M. Vasak, W. Bal, P. Faller, Chem. Comm., 2017, 53, 11634.
  • [67] V.B. Kenche, I. Zawisza, C.L. Masters, W. Bal, K.J. Barnham, S.C. Drew, Inorg. Chem., 2013, 52, 4303.
  • [68] M. Mital, I.A. Zawisza, M.Z. Wiloch, U.E. Wawrzyniak, V. Kenche, W. Wróblewski, W. Bal, S.C. Drew, Inorg. Chem., 2016, 55, 7317.
  • [69] H. Kanemitsu, T. Tomiyama, H. Mori, Neurosci. Lett., 2003, 350, 113.
  • [70] C. Oefner, B.P. Roques, M.C. Fournie-Zaluski, G.E. Dale, Acta Crystallogr., Sect. D: Biol. Crystal-logr., 2004, 60, 392.
  • [71] M. Mital, W. Bal, T. Frączyk, S. C. Drew, Inorg. Chem., 2018, 57, 6193.
  • [72] K. Bossak-Ahmad, M. Mital, D. Płonka, S. C. Drew, W. Bal, Inorg. Chem., 2019, 58, 932.
  • [73] E. Cabrera, P. Mathews, E. Mezhericher, T.G. Beach, J. Deng, T.A. Neubert, A. Rostagno, J. Ghiso, Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864, 208.
  • [74] B. Reilly-O’Donnell, G.B. Robertson, A. Karumbi, C. McIntyre, W. Bal, M. Nishi, H. Takeshima, A.J. Stewart, S.J. Pitt, J. Biol. Chem., 2017, 292, 13361.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac9eb52e-fbdf-49d3-83ba-188ec10bb45a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.