PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discovering diagnostic gene targets for early diagnosis of acute GVHD using methods of computational intelligence on gene expression data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This is an application paper of applying standard methods of computational intelligence to identify diagnostic gene targets and to use them for a successful diagnosis of a medical problem - acute graft-versus-host disease (aGVHD). This is the major complication after allogeneic haematopoietic stem cell transplantation (HSCT) in which functional immune cells of donor, recognize the recipient as ”foreign” and mount an immunologic attack. In this paper we analyzed gene-expression profiles of 47 genes associated with allo-reactivity in 59 patients submitted to HSCT. We have applied different dimensionality reduction techniques of the variable space, combined with different classifiers to detect the aGVHD at onset of clinical signs. This is a preliminary study which utilises both computational and biological evidence for the involvement of a limited number of genes for the diagnosis of aGVHD. Directions for further studies are also outlined in this paper.
Rocznik
Strony
81--89
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
  • DIMET, University Mediterranea of Reggio Calabria Via Graziella, Feo di Vito, 89100 Reggio Calabria, Italy
  • DIMET, University Mediterranea of Reggio Calabria Via Graziella, Feo di Vito, 89100 Reggio Calabria, Italy
autor
  • Knowledge Engineering and Discovery Research Institute, AUT350 Queen Street, Auckland, New Zealand
autor
  • Knowledge Engineering and Discovery Research Institute, AUT350 Queen Street, Auckland, New Zealand
autor
  • Transplant Regional Center of Stem Cells and Cellular Therapy, ”A. Neri” Via Petrara 11, 89100 Reggio Calabria, Italy
autor
  • Transplant Regional Center of Stem Cells and Cellular Therapy, ”A. Neri” Via Petrara 11, 89100 Reggio Calabria, Italy
Bibliografia
  • [1] N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach, Springer, London, 2007.
  • [2] N. Kasabov , I.A. Sidorov, D.S. Dimitrov, Computational Intelligence, Bioinformatics and Computational Biology: A Brief Overview of Methods, Problems and Perspectives, J. Comp. and Theor. Nanosc., Vol.2,No.4,2005,473–491.
  • [3] F. R. Appelbaum, Haematopoietic cell transplantation as immunotherapy, Nature, 411, 2001, 385–389.
  • [4] D. Weisdorf, Graft vs. Host disease: pathology, prophylaxis and therapy: GVHD overview, Best Pr. & Res. Cl. Haematology, vol. 21, 2008, No.2, 99-100.
  • [5] P. Lewalle, R. Rouas, and P. Martiat, Allogeneic hematopoietic stem cell transplantation for malignant disease: How to prevent graft-versushost disease without jeopardizing the graft-versustumor effect?, Drug Discovery Today: Therapeutic Strategies |Immunological disorders and autoimmunity, Vol.3,1, 2006.
  • [6] J.L. Ferrara, Advances in the clinical management of GVHD, Best Pr. & Res. Cl. Haematology, Vol.21,4, 2008,677–682.
  • [7] D. Przepiorka, D. Weisdorf, and P. Martin, Consensus Conference on acute GVHD grading, Bone Marrow Transplanation, vol. 15, 1995, 825–828.
  • [8] S. Paczesny, J.E. Levine, T.M. Braun, and J.L. Ferrara, Plasma biomarkers in Graft-versus-Host Disease: a new era?, Biology of Blood and Marrow Transplantation, vol. 15, 2009, 33–38.
  • [9] S. Paczesny, I. K. Oleg, and M. Thomas, A biomarker panel for acute graft-versus-host disease, Blood, vol. 113, 2009, 273–278.
  • [10] M.P. Buzzeo, J. Yang, G. Casella, and V. Reddy, A preliminary gene expression profile of acute graft-versus-host disease. Cell Transplantation, vol.17,5,2008,489–494.
  • [11] P. Langley, Selection of relevant features in machine learning. Proceedings of AAAI Fall Symposium on Relevance, 1994, 140–144.
  • [12] M.A. Hall, Correlation-based feature selection for machine learning. Ph.D. Thesis. Department of Computer Science, University of Waikato, New Zealand.
  • [13] P.J.A. Shaw, Multivariate Statistic for the Environmental Sciences, Hodder-Arnold, 2003.
  • [14] C. Bishop, Neural Networks for Pattern Recognition. Calderon-Press, Oxford, 1995.
  • [15] V. Kurkova, Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 5, 1992, 501–506.
  • [16] J. Platt., Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods–Support Vector Learning. MIT Press, 1998.
  • [17] T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer and D. Haussler, Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 2000, 906–914.
  • [18] D.B. Fogel, An information criterion for optimal neural network selection. IEEE Tran. N.N., 1991, 490–497.
  • [19] J.E. Foley Jason, J. Mariotti, K. Ryan, M. Eckhaus, and D.H. Fowler, The cell therapy of established acute graft-versus-host disease requires IL-4 and IL-10 and is abrogated by IL-2 or hosttype antigen-presenting cells, Biology of Blood and Marrow Transplantation, vol. 14, 2008, 959–972.
  • [20] X.-Z Yu. Y. Liang, R.I. Nurieva, F. Guo, C. Anasetti, and C. Dong, Opposing effects of ICOS on graft-versus-host disease mediated by CD4 and CD8 T cells1, The Journal of Immunology. 176, 2006, 7394–7401.
  • [21] Y. Hu, Q. Song and N. Kasabov, Personalized Modeling based Gene Selection for Microarray Data Analysis. In: The 15th Int. Conf. on Neuro-Information Processing, ICONIP, Auckland, New Zealand, Nov. 2008, Springer LNCS vol.5506/5507, 2009
  • [22] N.Kasabov, Global, local and personalised modelling and profile discovery in Bioinformatics: An integrated approach, Pattern Recognition Letters, Vol.28, 6, 2007, 673–685.
  • [23] Q. Song and N. Kasabov, TWNFI- a transductive neuro-fuzzy inference system with weighted data normalisation for personalised modelling, Neural Networks, Vol.19, 10, Dec. 2006, 1591–1596
  • [24] N. Kasabov, Data Analysis and Predictive Systems and Related Methodologies, PCT Patent, NZ reg.572036, 2008
  • [25] S. Schliebs, M. Defoin-Platel, S. Worner and N. Kasabov, Integrated Feature and Parameter Optimization for Evolving Spiking Neural Networks: Exploring Heterogeneous Probabilistic Models, Neural Networks, 22, 623–632, 2009.
  • [26] N. Kasabov, To spike or not to spike: A probabilistic spiking neural model, Neural Networks, Vol.23,1, Jan. 2010, 16–19
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac9b167e-5e18-4b69-9dde-937c1504158e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.