PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of raceway waviness on the level of vibration in rolling-element bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper provides a quantitative analysis of how raceway waviness (RONt) in 6304-type bearings affects their vibration. The waviness of bearing races was measured at the actual points of contact between the balls and the races. The measurements were conducted in the range of 16–50 undulations per revolution (UPR). The bearing vibration was analyzed in three bandwidths of frequency: low (LB) (50 ÷ 300 Hz), medium MB (300 ÷ 1800 Hz) and high HB (1800 ÷ 10 000 Hz), as well as in the full RMS bandwidth. The paper also presents the procedure used to determine the actual points of contact between the ball and each race to specify the point of waviness measurement. The method of calculation of the contact angle for a ball bearing is also discussed. The Pearson linear correlation coefficients were determined to analyze the relationships between the waviness parameters and the level of vibration. The test results show that an increase in the surface waviness on the inner and outer raceways causes an increase in the vibration level. The influence is most visible for the medium frequency bandwidth.
Rocznik
Strony
541--551
Opis fizyczny
Bibliogr. 32 poz., tab., wykr., fot., rys.
Twórcy
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Ave., 25-314 Kielce, Poland
Bibliografia
  • [1] K. Stępień, “In situ measurement of cylindricity – problems and solution”, Precision Engineering 38 (3), 697–701 (2015).
  • [2] S. Adamczak, P. Zmarzły, and D. Janecki, “Theoretical and practical investigations of V-block waviness measurement of cylindrical parts”, Metrology and Measurement Systems 22 (2), 181–192 (2015).
  • [3] Y. Zhuo, X. Zhou, and C. Yang, “Dynamic analysis of double-row self-aligning ball bearings due to applied loads, internal clearance, surface waviness and number of balls”, Journal of Sound and Vibration 333 (23), 6170–6189 (2014).
  • [4] Z. Ren, J. Wang, F. Guo, and A.A. Lubrecht, “Experimental and numerical study of the effect of raceway waviness on the oil film in thrust ball bearings”, Tribology International 73, 1–9 (2014).
  • [5] I. El-Thalji and J. Erkki, “A summary of fault modelling and predictive health monitoring of rolling element bearings”, Mechanical Systems and Signal Processing 60–61, 252–272 (2015).
  • [6] J. Suna, R.J.K. Wood, L. Wanga, I. Care, and H.E.G. Powrie, “Wear monitoring of bearing steel using electrostatic and acoustic emission techniques”, Wear 259, 1482–1489 (2005).
  • [7] N. Tandon and A. Choudhury, “A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings”, Tribology International 32, 469–480 (1999).
  • [8] A. Wang and J. Wang, “Temperature distribution and scuffing of tapered roller bearing”, Chinese Journal of Mechanical Engineering 27 (6), 1272–1279 (2014).
  • [9] M. Li , MQ. Jing, ZF. Chen, and H. Liu, “An improved ultrasonic method for lubricant-film thickness measurement in cylindrical roller bearings under light radial load”, Tribology International 78, 35–40 (2014).
  • [10] L. Zhen, H. Zhengjia, Z. Yanyang, and C. Xuefeng, “Bearing condition monitoring based on shock pulse method and improved redundant lifting scheme”, Mathematics and Computers in Simulation 79, 318–338 (2008).
  • [11] S. Raadnui and S. Kleesuwan, “Electrical pitting wear debris analysis of grease-lubricated rolling element bearings”, Wear 271, 1707–1718 (2011).
  • [12] B. Blachowski, A. Swiercz, P. Gutkiewicz, J. Szelążek, and W. Gutkowski, “Structural damage detectability using modal and ultrasonic approaches”, Measurement 85, 210–221 (2016).
  • [13] Z. Stanik, “Vibro-acoustic diagnostics of rolling bearings in vessels”, Trans. Marit. Sci. 3 (2), 111–118 (2014).
  • [14] E. Miko and Ł. Nowakowski, “Vibrations in the machining system of the vertical machining center”, Procedia Engineering 39, 405–413 (2012).
  • [15] C. Kundera, “Determination and analysis of cross-couplings of axial and angular vibrations of a flexibly mounted ring in a non-contacting face seal”, Journal of Tribology – Transactions of the ASME 125 (4), 797–803 (2003).
  • [16] R. Akhand and S.H. Upadhyay, “A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings”, Tribology International 96, 289–306 (2016).
  • [17] T. Karacay and N. Akturk, “Experimental diagnostics of ball bearings using statistical and spectral methods”, Tribology International 42, 836–843 (2009).
  • [18] J.P. Dron, F. Bolaers, and L. Rasolofondraibe, “Improvement of the sensitivity of the scalar indicators (crest factor, kurtosis) using a de-noising method by spectral subtraction: application to the detection of defects in ball bearings”, Journal of Sound and Vibration 270, 61–73(2004).
  • [19] T.J. Harvey, R.J.K. Wood, and H.E.G. Powrie, “Electrostatic wear monitoring of rolling element bearings”, Wear 263, 1492–1501 (2007).
  • [20] K. Stępień and W. Makieła, “An analysis of deviations of cylindrical surfaces with the use of wavelet transform”, Metrology and Measurement Systems 20 (1), 139–150 (2013).
  • [21] S. Prabhakar, A.R. Mohanty, and A.S. Sekha, “Application of discrete wavelet transform for detection of ball bearing race faults”, Tribology International 35, 793–800 (2002).
  • [22] R.B. Randall, J. Antoni, and S. Chobsaard, “The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals”, Mechanical Systems and Signal Processing 15 5), 945–962 (2001).
  • [23] M. Tiwari, K. Gupta, and O. Prakash, “Effect of radial internal clearance of ball bearing on the dynamics of a balanced horizontal rotor”, Journal of Sound and Vibration 238, 723–756 (2000).
  • [24] R.K. Purohit and K. Purohit, “Dynamic analysis of ball bearings with effect of preload and number of balls”, Int. J. of Applied Mechanics and Engineering 11 (1), 77–91 (2006).
  • [25] W. Liu, Y. Zhang , Z.-J. Feng, J.-S. Zhao, and D. Wang, “A study on waviness induced vibration of ball bearings based on signal coherence theory”, Journal of Soundand Vibration 333, 6107–6120 (2014).
  • [26] C.K. Babu, N. Tandon, and R.K. Pandey, “Vibration modeling of a rigid rotor supported on the lubricated angular contact ball bearings considering six degrees of freedom and waviness on balls and races”, Journal of Vibration and Acoustics 134 (1), 011006 (2012).
  • [27] S. Adamczak, P. Zmarzły, and K. Stępień, “Identification and analysis of optimal method parameters of the V-block waviness measurements”, Bull. Pol. Ac.: Tech. 64 (2), 45–52 (2016).
  • [28] R. Kostek, “Simulation and analysis of vibration of rolling bearing”, Key Engineering Materials 588, 257–265 (2013).
  • [29] S. Adamczak, R. Domagalski, E. Sender, P. Zmarzły, and Ł. Gorycki, “Research methods and testing stand developed to examine vibrations generated by rolling bearing”, Diagnostyka 17 (1), 41–49 (2016).
  • [30] NSK Motion & Control, Technical Report CAT. No. E728g, 2013, (prospect).
  • [31] S. Adamczak, A. Janusiewicz, W. Makieła, and K. Stępień, “Statistical validation of the method for measuring radius variations of components on the machine tool”, Metrol. Meas. Syst. 18 (1), 35–46 (2011).
  • [32] B.P. Graney and K. Starry, “Rolling element bearing analysis”, Materials Evaluation 70 (1), 78–85 (2011).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac98d706-69da-4ee2-b523-0c12d446cf83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.