PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The effects of arc voltage and shielding gas type on the microstructure of wire arc additively manufactured 2209 duplex stainless steel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Duplex stainless steels (DSSs) are widely used due to their corrosion resistance. Austenite and ferrite determine the excellent properties. Ferrite provides strength and good corrosion resistance, while austenite provides toughness and weldability. During our research,samples were producedwith ER 2209 duplex steel wire using wirearc additive manufacturing (WAAM). Two different 17V and 19V arc voltages were used during the production. Two shielding gases were used for each voltage: M12-ArC-2.5 and M12-ArHeC-20/2. The research aimed to determine the ferrite ratio as a function of the welding parameters. The ferrite(or austenite)content must be between 30% and 70% for duplex stainless steel welds, according to the ISO 17781 standard.Based on our research, it can be stated that the austenite ratio increases as the voltage increases, thus failing to fulfill the standard's requirements. The helium content reduced the ferrite ratio even when the 17V voltage was used due to the gas's higher ionizationpotential. During the metallographicexamination, our welded samples met the standardrequirements for the austenite content for17V arc voltage and M12-ArC-2.5 shielding gas. The ferrite content in the entire sample cross-sectionfell between 30-42% duringferitscopeand image analysis measurements. These welding parameters can be recommended for industrial applications.
Rocznik
Strony
62--82
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
  • Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
  • Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
  • Department of Materials Science and Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
Bibliografia
  • 1. J. C. Lippold, D. J. Kotecki,“Welding metallurgy and weldability of stainless steels”. John Wiley & Sons, Inc.2005.
  • 2. A. Baghdadchi, V. A. Hosseini, K. Hurtig, and L. Karlsson, “Promoting austenite formation in laser welding of duplex stainless steel-impact of shielding gas and laser reheating”,Weld World, vol. 65, pp. 499–511, 2021,doi: 10.1007/s40194-020-01026-7.
  • 3. M. Landowski, “Influence of Parameters of Laser Beam Welding on Structure of 2205 Duplex Stainless Steel,” Adv Mater Sci, vol. 19, no. 1, pp. 21–31, Mar. 2019, doi: 10.2478/adms-2019-0002.
  • 4. D. Zhang, A. Liu, B. Yin, and P. Wen, “Additive manufacturing of duplex stainless steels -A critical review,” J Manuf Proc, vol. 73. Elsevier Ltd, pp. 496–517, Jan. 01, 2022. doi: 10.1016/j.jmapro.2021.11.036.
  • 5. A. K. Maurya, C. Pandey, and R. Chhibber, “Dissimilar welding of duplex stainless steel with Ni alloys: A review,” Int J PressVess, vol. 192. Elsevier Ltd, Aug. 01, 2021. doi: 10.1016/j.ijpvp.2021.104439.
  • 6. E. M. Westin and F. G. Warchomicka, “Solidification cracking in duplex stainless steel flux-cored arc welds Part 2 —susceptibility of 22Cr all-weld metals under high restraint,” Weld World, vol. 66, no. 12, pp. 2425–2442, Dec. 2022, doi: 10.1007/s40194-022-01389-z.
  • 7. “ISO 17781:2017: Petroleum, petrochemical and natural gas industries —Test methods for quality control of microstructure of ferritic/austenitic (duplex) stainless steels.” Jul. 2017. Accessed: Oct. 01, 2023. [Online]. Available: https://www.iso.org/standard/60525.html.
  • 8. M. Landowski, A. Świerczyńska, G. Rogalski, and D. Fydrych, “Autogenous fiber laser welding of 316L austenitic and 2304 lean duplex stainless steels,” Materials, vol. 13, no. 13, pp. 1–16, Jul. 2020, doi: 10.3390/ma13132930.
  • 9. K. U. Rani, R. Kumar, M. M. Mahapatra, R.S. Mulik, A. Świerczyńska, D. Fydrych, C. Pandey,“Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses,” Materials, vol. 15, no. 20, Oct. 2022, doi: 10.3390/ma15207094.
  • 10. “ISO 4063:2023: Welding, brazing, soldering and cutting —Nomenclature of processes and reference numbers.” International Organization for Standardization, Mar. 2023. Accessed: Oct. 01, 2023. [Online]. Available: https://www.iso.org/standard/75108.html.
  • 11. C. R. Cunningham, J. M. Flynn, A. Shokrani, V. Dhokia, and S. T. Newman, “Invited review article: Strategies and processes for high quality wire arc additive manufacturing,” AdditManuf, vol. 22., pp. 672–686, Aug. 01, 2018. doi: 10.1016/j.addma.2018.06.020.
  • 12. M. A. Jackson, A. Van Asten, J. D. Morrow, S. Min, and F. E. Pfefferkorn, “A Comparison of Energy Consumption in Wire-based and Powder-based Additive-subtractive Manufacturing,” in Proc Manuf, 2016, pp. 989–1005. doi: 10.1016/j.promfg.2016.08.087.
  • 13. D. Ding, Z. Pan, D. Cuiuri, and H. Li, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests,” Int J Adv Manuf Technol, vol. 81, no. 1–4. Springer London, pp. 465–481, Oct. 26, 2015. doi: 10.1007/s00170-015-7077-3.
  • 14. A. Taşdemir and S. Nohut, “An overview of wire arc additive manufacturing (WAAM) in shipbuilding industry,” Ships Offshore Struct, pp. 1–18, 2020. doi: 10.1080/17445302.2020.1786232.
  • 15. J. Łabanowski, K. Prokop-Strzelczyńska, G. Rogalski, and D. Fydrych, “The Effect of Wet Underwater Welding on Cold Cracking Susceptibility of Duplex Stainless Steel,” Adv Mater Sci, vol. 16, no. 2, pp. 68–77, Jun. 2016, doi: 10.1515/adms-2016-0010.
  • 16. P. R. Seré, C. Deyá, C. I. Elsner, and A. R. Di Sarli, “Behavior of two eco-compatible duplex systems used in the construction industry against corrosion,” Int J Adhes Adhes, vol. 50, pp. 1–6, Apr. 2014, doi: 10.1016/j.ijadhadh.2013.12.019.
  • 17. M. Eriksson, M. Lervåg, C. Sørensen, A. Robertstad, B. M. Brønstad, B. Nyhus, R. Aune, X. Ren, O. M. Akselsen, “Additive manufacture of superduplex stainless steel using WAAM,” in MATEC Web Conf, EDP Sciences, Aug. 2018. doi: 10.1051/matecconf/201818803014.
  • 18. V. A Hosseini, M. Högström, K. Hurtig, M. A. Valiente Bermejo, L. E. Stridh, and L. Karlsson, “Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization,” WeldWorld, vol. 63, no. 4, pp. 975–987, Jun. 2019, doi: 10.1007/s40194-019-00735-y.
  • 19. N. Knezović, I. Garašić, and I. Jurić, “Influence of the interlayer temperature on structure and properties of wire and arc additive manufactured duplex stainless steel product,” Materials, vol. 13, no. 24, pp. 1–16, Dec. 2020, doi: 10.3390/ma13245795.
  • 20. X. Bi, R. Li, Z. Hu, J. Gu, and C. Jiao, “Microstructure and Texture of 2205 Duplex Stainless Steel Additive Parts Fabricated by the Cold Metal Transfer (CMT) Wire and Arc Additive Manufacturing (WAAM),” Metals (Basel), vol. 12, no. 10, Oct. 2022, doi: 10.3390/met12101655.
  • 21. A. Queguineur, R. Asadi, M. Ostolaza, E. H. Valente, V. K. Nadimpalli, G. Mohanty, J.-Y. Hascoët, I. F. Ituarte, “Wire arc additive manufacturing of thin and thick walls made of duplex stainless steel,” Int J Adv Manuf Technol, vol. 127, no. 1–2, pp. 381–400, Jul. 2023, doi: 10.1007/s00170-023-11560-5.
  • 22. Y. Zhang, F. Cheng, and S. Wu, “The microstructure and mechanical properties of duplex stainless steel components fabricated via flux-cored wire arc-additive manufacturing,” J Manuf Process, vol. 69, pp. 204–214, Sep. 2021, doi: 10.1016/j.jmapro.2021.07.045.
  • 23. “ISO 14343:2017: Welding consumables —Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels —Classification,” International Organization for Standardization, Mar. 2017, Accessed: Oct. 01, 2023. [Online]. Available: https://www.iso.org/standard/67727.html.
  • 24. “ISO 14175:2008: Welding consumables —Gases and gas mixtures for fusion welding and allied processes,” International Organization for Standardization, Oct. 2008, Accessed: Oct. 01, 2023. [Online]. Available: https://www.iso.org/standard/39569.html.
  • 25. Linde Gáz Magyarország Zrt., “Védőgázok -A Linde hegesztési védőgázai,” Version: v.17.
  • 26. Alleima, “Shielding gas recommendations for MIG and TIG welding,” https://www.alleima.com/en/technical-center/shielding-the-weld/. Accessed: Sep. 04, 2023. [Online]. Available: https://www.alleima.com/en/technical-center/shielding-the-weld/.
  • 27. Certilas, “The filler metal specialist: Duplex 2209 stainless steels welding wire. Type 2219, 1.4462.” Accessed: Sep. 04, 2023. [Online]. Available: https://certilas.com/en/product/2209-duplex.
  • 28. M. Koukolíková, P. Podaný, S. Rzepa, M. Brázda, and A. Kocijan, “Additive manufacturing multi-material components of SAF 2507 duplex steel and 15-5 PH martensitic stainless steel,” J Manuf Process, vol. 102, pp. 330–339, Sep. 2023, doi: 10.1016/j.jmapro.2023.07.057.
  • 29. B. Bögre and I. Mészáros, “Problems of ferrite content determination,” Period Polytech Mech Eng, vol. 64, no. 2, pp. 150–158, 2020, doi: 10.3311/PPME.15022.
  • 30. “ISO 6507-1:2018: Metallic materials —Vickers hardness test —Part 1: Test method,” International Organization for Standardization. Jan. 2018. Accessed: Oct. 01, 2023. [Online]. Available: https://www.iso.org/standard/64065.html.
  • 31. N. Otsu, “A_Threshold_Selection_Method_from_Gray-Level_Histograms,” IEEE Trans Syst Man Cybern.Syst, 9, 62-66, 1979, doi:10.1109/TSMC.1979.4310076.
  • 32. X. Zhang, K. Wang, Q. Zhou, J. Kong, Y. Peng, J. Ding, C. Diao, D. Yang, Y. Huang, T. Zhang, S. W. Williams, “Element partitioning and electron backscatter diffraction analysis from feeding wire to as-deposited microstructure of wire and arc additive manufacturing with super duplex stainless steel,” MaterSci Eng A, vol. 773, Jan. 2020, doi: 10.1016/j.msea.2019.138856.
  • 33. L. Karlsson, “Welding duplex stainless steels –A review of current recommendations”, Welding in the World, vol. 56, 2012.
  • 34. P. Luchtenberg, P. T. de Campos, P. Soares, C. A. H. Laurindo, O. Maranho, and R. D. Torres, “Effect of welding energy on the corrosion and tribological properties of duplex stainless steel weld overlay deposited by GMAW/CMT process,” Surf Coat Technol, vol. 375, pp. 688–693, Oct. 2019, doi: 10.1016/j.surfcoat.2019.07.072.
  • 35. K. L. Weng, H. R. Chen, and J. R. Yang, “The low-temperature aging embrittlement in a 2205 duplex stainless steel,” MaterSci Eng A, vol. 379, no. 1–2, pp. 119–132, Aug. 2004, doi: 10.1016/j.msea.2003.12.051.
  • 36. K.Korjala, “Helium as a welding shielding gas: Effects on CO2emissions by helium recovery and recycling system,” Licentiate Thesis, Lappeenranta-Lahti University of Technology LUT, Finland, 2021, URN: NBN:fi-fe2021062840210.
  • 37. Z. H. Rao, J. Hu, S. M. Liao, and H. L. Tsai, “Modeling of the transport phenomena in GMAW using argon-helium mixtures. Part i -The arc,” Int J Heat Mass Transf, vol. 53, no. 25–26, pp. 5707–5721, Dec. 2010, doi: 10.1016/j.ijheatmasstransfer.2010.08.009.
  • 38. A. Fellman and V. Kujanpää, “The effect of shielding gas composition on welding performance and weld properties in hybrid CO2laser–gas metal arc welding of carbon manganese steel,” J Laser Appl, vol. 18, no. 1, pp. 12–20, Feb. 2006, doi: 10.2351/1.2164481.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac98025a-ee40-4a97-81a1-f0e80733db4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.