PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a family of the incomplete H-functions and associated integral transforms

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, Srivastava, Saxena and Parmar [H. M. Srivastava, R. K. Saxena and R. K. Parmar, Some families of the incomplete H-functions and the incomplete H-functions and associated integral transforms and operators of fractional calculus with applications, Russ. J. Math. Phys. 25 (2018), no. 1, 116-138] suggested incomplete H-functions (IHF) that paved the way to a natural extension and decomposition of H-function and other connected functions as well as to some important closed-form portrayals of definite and improper integrals of different kinds of special functions of physical sciences. In this article, our key aim is to present some new integral transform (Jacobi transform, Gegenbauer transform, Legendre transform and Pδ-transform) of this family of incomplete H-functions. Further, we give several interesting new and known results which are special cases our key results.
Wydawca
Rocznik
Strony
143--152
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Department of Applied Sciences, Engineering College, Banswara-327001, Rajasthan, India
  • Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India
Bibliografia
  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas; Graphs; and Mathematical Tables, Appl. Math. Ser. 55, National Bureau of Standards, Washington, 1964.
  • [2] L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan, New York, 1985.
  • [3] M. K. Bansal, P. Harjule, J. Choi, S. Mubeen and D. Kumar, Certain formulas involving a multi-index Mittag-Leffler function, East Asian Math. J. 35 (2019), 23-30.
  • [4] L. Debnath and D. Bhatta, Integral Transforms and Their Applications, 3rd ed., CRC Press, Boca Raton, 2015.
  • [5] H. Kang and C. An, Differentiation formulas of some hypergeometric functions with respect to all parameters, Appl. Math. Comput. 258 (2015), 454-464.
  • [6] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud. 204, Elsevier Science, Amsterdam, 2006.
  • [7] D. Kumar, Solution of fractional kinetic equation by a class of integral transform of pathway type, J. Math. Phys. 54 (2013), no. 4, Article ID 043509.
  • [8] S.-D. Lin, H. M. Srivastava and M.-M. Wong, Some applications of Srivastava’s theorem involving a certain family of generalized and extended hypergeometric polynomials, Filomat 29 (2015), no. 8, 1811-1819.
  • [9] S.-D. Lin, H. M. Srivastava and J.-C. Yao, Some classes of generating relations associated with a family of the generalized Gauss type hypergeometric functions, Appl. Math. Inf. Sci. 9 (2015), no. 4, 1731-1738.
  • [10] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Grundlehren Math. Wiss. 52, Springer, Berlin, 1966.
  • [11] A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and Other Disciplines, Halsted Press, New York, 1978.
  • [12] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function. Theory and Applications, Springer, New York, 2010.
  • [13] R. K. Saxena and K. Nishimoto, N-fractional calculus of generalized Mittag-Leffler functions, J. Fract. Calc. 37 (2010), 43-52.
  • [14] R. K. Saxena and K. Nishimoto, Further results on generalized Mittag-Leffler functions of fractional calculus, J. Fract. Calc. 39 (2010), 29-41.
  • [15] R. K. Saxena, T. K. Pogány, J. Ram and J. Daiya, Dirichlet averages of generalized multi-index Mittag-Leffler functions, Armen. J. Math. 3 (2010), no. 4, 174-187.
  • [16] H. M. Srivastava and P. Agarwal, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Appl. Math. 8 (2013), no. 2, 333-345.
  • [17] H. M. Srivastava, P. Agarwal and S. Jain, Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput. 247 (2014), 348-352.
  • [18] H. M. Srivastava, R. Agarwal and S. Jain, Integral transform and fractional derivative formulas involving the extended generalized hypergeometric functions and probability distributions, Math. Methods Appl. Sci. 40 (2017), no. 1, 255-273.
  • [19] H. M. Srivastava, M. Bansal and P. Harjule, A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function, Math. Methods Appl. Sci. 41 (2018), no. 16, 6108-6121.
  • [20] H. M. Srivastava, A. Çetinkaya and I. Onur Kıymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput. 226 (2014), 484-491.
  • [21] H. M. Srivastava, M. A. Chaudhry and R. P. Agarwal, The incomplete Pochhammer symbols and their applications to hypergeometric and related functions, Integral Transforms Spec. Funct. 23 (2012), no. 9, 659-683.
  • [22] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-Functions of One and Two Variables, South Asian Publishers, New Delhi, 1982.
  • [23] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1985.
  • [24] H. M. Srivastava and B. R. K. Kashyap, Special Functions in Queuing Theory and Related Stochastic Processes, Academic Press, New York, 1982.
  • [25] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ser. Math. Appl., Ellis Horwood, Chichester, 1984.
  • [26] H. M. Srivastava, R. K. Saxena and R. K. Parmar, Some families of the incomplete H-functions and the incomplete H-functions and associated integral transforms and operators of fractional calculus with applications, Russ. J. Math. Phys. 25 (2018), no. 1, 116-138.
  • [27] R. Srivastava, Some properties of a family of incomplete hypergeometric functions, Russ. J. Math. Phys. 20 (2013), no. 1, 121-128.
  • [28] R. Srivastava, Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput. 243 (2014), 132-137.
  • [29] R. Srivastava, R. Agarwal and S. Jain, A family of the incomplete hypergeometric functions and associated integral transform and fractional derivative formulas, Filomat 31 (2017), no. 1, 125-140.
  • [30] R. Srivastava and N. E. Cho, Generating functions for a certain class of incomplete hypergeometric polynomials, Appl. Math. Comput. 219 (2012), no. 6, 3219-3225.
  • [31] R. Srivastava and N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput. 234 (2014), 277-285.
  • [32] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, American Mathematical Society, Providence, 1975.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac958874-6144-4a98-bc21-fdb24791a6ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.