PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Potential of Seawater in Geopolymer Mixtures – Effect of Alkaline Activator, Seawater, and Steam Curing on the Strength of Geopolymer Paste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of seawater in cement-based concrete is debateable because it may increase the hydration rate but significantly decreases the durability. Alternately, seawater can be used as an alkaline activator solution in geopolymer however, very little is currently known about its effects. This study investigated the effect of seawater as alkaline activator mix solution and curing media on the compressive strength of geopolymer paste. The mixtures varied based on the molarity of alkaline activator solution. Alkaline activators were prepared with two solutions: diluted water and seawater. A day after casting, steam curing method was conducted at 65 °C for 2 hours and then immersed in seawater or normal water for 28 days. This study revealed that seawater in alkaline activator reduced the compressive strength by up to 25%. Applying temperature resulted the early age strength nearly comparable to the later age strength. Immersion the paste in seawater increased the strength up to 15%. The X-Ray diffraction analysis shown the presence of chloride on the surface, consequently preserving the compressive strength without any reduction at 28 days of immersion. The Scanning Electron Microscopy analysis inside the geopolymer paste prepared with seawater shown the microstructure of quartz, mullite, hematite, and the presence of chloride spread around resulting the disruption of polymerization. The results indicated that seawater has the potential as an alkaline activator mix solution and curing media, compensated by requirement of higher molarity of NaOH.
Słowa kluczowe
Rocznik
Strony
370--380
Opis fizyczny
Bibliograf. 38., rys., tab.
Twórcy
  • Sepuluh Nopember Institute of Technology (ITS), Department of Civil Engineering, Sukolilo, Surabaya, Indonesia
  • Department of Civil Engineering and Planning, Faculty of Engineering, State University of Malang, Semarang Street 5, Malang, Indonesia
  • National Institute of Technology (KOSEN), Department of Applied Chemistry and Biochemistry, Wakayama College, Wakayama, Japan
  • Sepuluh Nopember Institute of Technology (ITS), Department of Civil Engineering, Sukolilo, Surabaya, Indonesia
  • Faculty of Engineering Technology, Universiti Tun Hussein Onn, Johor, Malaysia
  • Civil and Construction Engineering, the National Taiwan University of Science and Technology (NTUST), Taipei City, Taiwan
Bibliografia
  • 1. Al Bakri Abdullah, M.M., Mohd Tahir, M.F., Hussin, K., Binhussain, M., Ekaputri, J.J. 2016. Effect of microwave curing to the compressive strength of fly ash based geopolymer mortar. Materials Science Forum, 841, 193–199. https://doi.org/10.4028/www.scientific.net/MSF.841.193
  • 2. ASTM 2010. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards, C, 3–6. https://doi.org/10.1520/C0618-19.2
  • 3. Castillo, H., Collado, H., Droguett, T., Vesely, M., Garrido, P., Palma, S. 2021. Factors affecting the compressive strength of geopolymers : A review. 1–28. https://doi.org/10.3390/min11121317
  • 4. Chindaprasirt, P., Chalee, W. 2014. Effect of sodium hydroxide concentration on chloride penetration and steel corrosion of fly ash-based geopolymer concrete under marine site. Construction and Building Materials, 63, 303–310. https://doi.org/10.1016/j.conbuildmat.2014.04.010
  • 5. Cong, P., Cheng, Y. 2021. Advances in geopolymer materials: A comprehensive review. Journal of Traffic and Transportation Engineering (English Edition), 8(3), 283–314. https://doi.org/10.1016/j.jtte.2021.03.004
  • 6. Davidovits, J. 1994. Properties of Geopolymer Cements. First International Conference on Alkaline Cements and Concretes, 131–149.
  • 7. Davidovits, J. 2013. Geopolymer cement a review. Geopolymer Science and Technics, 0, 1–11.
  • 8. Ekaputri, J.J., Mutiara, I.S., Nurminarsih, S., Chanh, N.V., Maekawa, K., Setiamarga, D.H.E. 2017. The effect of steam curing on chloride penetration in geopolymer concrete. MATEC Web of Conferences, 138. https://doi.org/10.1051/matecconf/201713801019
  • 9. Ekaputri, J.J., Shahib, M., Bari, A. 2020. Perbandingan regulasi fly ash sebagai limbah B3 di Indonesia dan beberapa negara. Media Komunikasi Teknik Sipil, 26(2), 150–162. https://doi.org/10.14710/mkts.v26i2.30762
  • 10. Giasuddin, H.M., Sanjayan, J.G., Ranjith, P.G. 2013. Strength of geopolymer cured in saline water in ambient conditions. Fuel, 107, 34–39. https://doi.org/10.1016/j.fuel.2013.01.035
  • 11. Halim, L.N., Ekaputri, J.J., Triwulan, T. 2017a. The Influence of Salt Water on Chloride Penetration in Geopolymer Concrete. MATEC Web of Conferences, 138. https://doi.org/10.1051/matecconf/201713801019
  • 12. Hardjito, D., Cheak, C.C., Lee Ing, C.H. 2008. Strength and setting times of low calcium fly ashbased geopolymer mortar. Modern Applied Science, 2(4), 3–11. https://doi.org/10.5539/mas.v2n4p3
  • 13. Herath, C., Gunasekara, C., Law, D.W., Setunge, S. 2020. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Construction and Building Materials, 258, 120606. https://doi.org/10.1016/j.conbuildmat.2020.120606
  • 14. Peraturan Presiden Nomor 3 Tahun 2016 Tentang Percepatan Pelaksanaan Proyek Strategis Nasional, JDIH, BPK RI.
  • 15. Jun, Y., Kim, J.H., Han, S.H., Kim, T. 2021. Influence of seawater on alkali-activated slag concrete. Materials and Structures/Materiaux et Constructions, 54(3), 1–16. https://doi.org/10.1617/s11527-021-01719-5
  • 16. Kovalchuk, G., Fernández-Jiménez, A., Palomo, A. 2007. Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development - Part II. Fuel, 86(3), 315–322. https://doi.org/10.1016/j.fuel.2006.07.010
  • 17. Kumar, P., Singh, N. 2020. Influence of recycled concrete aggregates and Coal Bottom Ash on various properties of high volume fly ash-self compacting concrete. Journal of Building Engineering, 32(April), 101491. https://doi.org/10.1016/j.jobe.2020.101491
  • 18. Liu, J., Doh, J.H., Dinh, H.L., Ong, D.E.L., Zi, G., You, I. 2022. Effect of Si/Al molar ratio on the strength behavior of geopolymer derived from various industrial waste: A current state of the art review. Construction and Building Materials, 329(February), 127134. https://doi.org/10.1016/j. conbuildmat.2022.127134
  • 19. Liu, Z., Deng, D., De Schutter, G. 2014. Does concrete suffer sulfate salt weathering? Construction and Building Materials, 66, 692–701. https://doi.org/10.1016/j.conbuildmat.2014.06.011
  • 20. McCarthy, M.J., Dyer, T.D. 2019. Pozzolanas and pozzolanic materials. In Lea’s Chemistry of Cement and Concrete (5th ed.). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100773-0.00009-5
  • 21. Nallaperuma, B., Lin, Z.E., Wijesinghe, J., Abeynayaka, A., Rachid, S., Karkour, S. 2023. Sustainable water consumption in building industry: A review focusing on building water footprint. Lecture Notes in Civil Engineering, 266, 799–810. https://doi.org/10.1007/978-981-19-2886-4_56
  • 22. Nuruddin, M.F., Malkawi, A.B., Fauzi, A., Mohammed, B.S., Almattarneh, H.M. 2016. Geopolymer concrete for structural use: Recent findings and limitations. IOP Conference Series: Materials Science and Engineering, 133(1). https://doi.org/10.1088/1757-899X/133/1/012021
  • 23. PT PLN. 2021. Statistik PLN 2021. Statistik PLN 2021, 01001–2206(Juni), 49–58.
  • 24. Rahman, S.K., Al-Ameri, R. 2022. Marine geopolymer concrete – a hybrid curable self-compacting sustainable concrete for marine applications. Applied Sciences, 12(6), 3116. https://doi.org/10.3390/app12063116
  • 25. Ren, J., Sun, H., Cao, K., Ren, Z., Zhou, B., Wu, W., Xing, F. 2021. Effects of natural seawater mixing on the properties of alkali-activated slag binders. Construction and Building Materials, 294, 123601. https://doi.org/10.1016/j.conbuildmat.2021.123601
  • 26. Ren, J., Sun, H., Li, Q., Li, Z., Zhang, X., Wang, Y., Li, L., Xing, F. 2022. A Comparison between alkaliactivated slag/fly ash binders prepared with natural seawater and deionized water. Journal of American Ceramic Society. https://doi.org/10.1111/jace.18515
  • 27. Republic of Indonesia. 2022. Law No.3 of 2022 concerning National Capital City. Indonesian Government, 1(1), 14.
  • 28. Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W., Lo, M.H. 2018. Emerging trends in global freshwater availability. Nature, 557(7707), 651–659. https://doi.org/10.1038/s41586-018-0123-1
  • 29. Saxena, S., Baghban, M.H. 2023. Seawater concrete: A critical review and future prospects. Developments in the Built Environment, 16(100257). https://doi.org/10.1016/j.dibe.2023.100257
  • 30. Shi, D., Yao, Y., Ye, J., Zhang, W. 2019. Effects of seawater on mechanical properties, mineralogy and microstructure of calcium silicate slag-based alkali-activated materials. Construction and Building Materials, 212, 569–577. https://doi.org/10.1016/j.conbuildmat.2019.03.288
  • 31. Singh, B., Ishwarya, G., Gupta, M., Bhattacharyya, S.K. 2015. Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
  • 32. Singh, N., Kumar, P., Goyal, P. 2019. Reviewing the behaviour of high volume fly ash based self compacting concrete. Journal of Building Engineering, 26, 100882. https://doi.org/10.1016/j. jobe.2019.100882
  • 33. UNDP. 2018. The 17 Goals. The Global Goals for Sustainable Developement, 15–18. https://www.globalgoals.org/
  • 34. United States Geological Service 2014. The distribution of water on, in, and above the Earth. The USGS Water Science School., 2. https://www.usgs.gov/media/images/distribution-water-and-above-earth
  • 35. Xiao, J., Qiang, C., Nanni, A., Zhang, K. 2017. Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Construction and Building Materials, 155, 1101–1111. https://doi.org/10.1016/j.conbuildmat.2017.08.130
  • 36. Zerfu, K., Ekaputri, J.J. 2016. Review on alkaliactivated fly ash based geopolymer concrete. Materials Science Forum, 841(March), 162–169. https://doi.org/10.4028/www.scientific.net/MSF.841.162
  • 37. Zhang, Z., Yao, X., Zhu, H. 2010. Potential application of geopolymers as protection coatings for marine concrete I. Basic properties. Applied Clay Science, 49(1–2), 1–6. https://doi.org/10.1016/j.clay.2010.01.014
  • 38. Zhuang, X.Y., Chen, L., Komarneni, S., Zhou, C.H., Tong, D.S., Yang, H.M., Yu, W.H., Wang, H. 2016. Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac912d34-265d-42e9-9ad3-f272c7569c92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.