PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Heat Loss of a Biogas Anaerobic Digester in Weather Conditions in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently in Poland, the construction of biogas plants as alternative energy sources is increasing. Often, the technical solutions for design and building of biogas plants are transferred to Poland from the countries in which these technologies are developed without taking into account the specific climatic conditions prevailing in Poland. It does occur that newly built biogas plants have a problem maintaining a sufficiently high temperature in the winter, which is caused by the insufficient insulation of the biogas anaerobic digester envelope. This paper presents an analysis of heat loss, depending on the climatic conditions prevailing in Poland and the working conditions of a biogas plant, based on an existing facility located in Ryboly (Poland). The work is supplemented with the results of tests using a thermal imaging camera. It should be noted that currently there are no requirements in the literature regarding the design of a thermal insulating layer in biogas installations in Poland.
Słowa kluczowe
Rocznik
Strony
242--250
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of HVAC Engineering, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
autor
  • Department of HVAC Engineering, Faculty of Civil and Environmental Engineering, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
  • 1. Białowiec A., Wiśniewski D., Pulka J., Siudak M., Jakubowski B., Myślak B. 2015. Biodrying of the Digestate from Agricultural Biogas Plants. Annual Set The Environment Protection, 17(2), 1554-1568 (in Polish).
  • 2. Biernacka B. 2010. Semi-empirical formula for the natural ground temperature distribution in Bialystok city region. Civil and Environmental Engineering, 1, 5-9 (in Polish).
  • 3. Dewil R., Appels L., Baeyens J. 2007. Improving the heat transfer properties of waste activated sludge by advanced oxidation processes. Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, 16-20 September 2007.
  • 4. El-Mashad H.M., Van Loon W.K., Zeeman G., Bot G.P., Lettinga G. 2004. Design of a solar thermophilic anaerobic reactor for small farms. Biosyst. Eng., 87 (3), 345-353.
  • 5. EN ISO 6946:2017–10 Building components and building elements – Thermal resistance and thermal transmittance – Calculation method.
  • 6. Gebremedhin K.G., Wu B., Gooch C., Wright P., Inglis S. 2005. Heat transfer model for plug-flow anaerobic digesters. Trans. ASAE, 48 (2), 777-785.
  • 7. Guo J., Dong R., Clemens J., Wang W. 2013. Thermal modelling of the completely stirred anaerobic reactor treating pig manure at low range of mesophilic conditions. Journal of Environmental Management, 127, 18-22.
  • 8. Hreiz R., Adouani N., Jannot Y., Pons M.-N. 2017. Modeling and simulation of heat transfer phenomena in a semi-buried anaerobic digester. Chemical Engineering Research and Design, 119, 101-116.
  • 9. Kogut P., Piekarski J., Dąbrowski T., Kaczmarek F. 2012. Biogas production plants as a method of utilisation of sewage sludge in relation to the polish legislation. Annual Set The Environment Protection, 14, 299-313 (in Polish).
  • 10. Lebiocka M., Montusiewicz A., Zdeb M. 2010. Anaerobic co-digestion of sewage sludge and old landfill leachate. Polish Journal of Environmental Studies, Series of Monographs, 2, 141-145.
  • 11. Merlin G., Kohler F., Bouvier M., Lissolo T., Boileau H. 2012. Importance of heat transfer in an anaerobic digestion plant in a continental climate context. Bioresour. Technol. ,124, 59-67.
  • 12. Montusiewicz A. 2014. Co-digestion of sewage sludge and mature landfill leachate in pre-bioaugmented system. Journal of Ecological Engineering, 15(4), 98-104.
  • 13. Perrigault T., Weatherford V., Martí-Herrero J., Poggio D. 2012. Towards thermal design optimization of tubular digesters in cold climates: A heat transfer model. Bioresource Technology, 124, 259-268.
  • 14. Pilarska A. A. 2018. Anaerobic co-digestion of waste wafers from confectionery production with sewage sludge. Polish Journal of Environmental Studies, 27(1), 237-245.
  • 15. PN-EN 12831–1:2017–08 Heating systems in buildings – Method for calculation of the design heat load.
  • 16. Sadecka Z., Suchowska-Kisielewicz M. 2016. Cofermentation of Chicken Manure. Annual Set The Environment Protection, 18, 609-625 (in Polish).
  • 17. Shaheen M., Nene A. A. 2014. Thermal simulation of biogas plants using Matlab. International Journal of Engineering Research and Applications, 4, 24-28.
  • 18. Terradas-III G., Triolo J. M., Pham C. H., Martí-Herrero J., Sommer S. G. 2014. Thermic model to predict biogas production in unheated fixed dome digesters buried in the ground. Environmental Science and Technology, 48, 3253-3262.
  • 19. Wu B., Bibeau E.L. 2006. Development of 3-D anaerobic digester heat transfer model for cold weather applications. Trans. Am.Soc. Agric. Eng., 49 (3), 7749-7757.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac909e33-c43b-42cc-80c3-73e2744945ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.