PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bond strength of concrete-filled hollow section with modified fibrous foamed concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The concrete-filled section of columns has been widely in construction used due to its structural elements. As a result, the usage of composite columns has recently increased all over the world. However, using foamed concrete alone does not result in much improvements in strength. Therefore, this paper examines the use of foamed concrete containing fibre to improve the strength of composite columns. Specifically, this study aims to determine the bond strength of concrete-filled hollow section (CFHS) with modified fibrous foamed concrete. Two types of fibre are used in this work, namely, steel fibre and polypropylene fibre, with rice husk ash (RHA) as a sand replacement to improve the compressive strength of foamed concrete. The CFHS with modified fibrous foamed concrete is tested by using the push-out method, and the results show that CFHS with steel fibre has a highest bond strength.
Rocznik
Strony
97--108
Opis fizyczny
Bibliogr. 22 poz., il., tab.
Twórcy
  • Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Malaysia
autor
  • Jamilus Research Center, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Malaysia
  • Jamilus Research Center, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Malaysia
autor
  • Jamilus Research Center, Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Malaysia
autor
  • University of Greenwich, United Kingdom
autor
  • Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, Malaysia
Bibliografia
  • 1. Vinay, G., Raju, J., Dar, M. A., & Manzoor, S. B. (2015) “A Study on Composite Steel Tubes”, (April), 107–112.
  • 2. Hafiz, F. (2016) “Analytical and Numerical Study on Behavior of Concrete Filled Steel Tabular Columns Subjected to Axial Compression Loads”, 7(9), 1720–1727.
  • 3. Chen, Y., Feng, R., Shao, Y., & Zhang, X. (2017) “Bond-slip behaviour of concrete-filled stainless steel circular hollow section tubes” Journal of Constructional Steel Research, 130, 248–263.
  • 4. Tao Z., Han L. H., Uy B., Chen X., (2011) “Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns” Journal of Constructional Steel Research 67 (3) 484-96
  • 5. Shakir-Khalil H. (1993) “Push out strength of concrete-filled steel hollow sections” The Structural Engineer 71 (13) 230–43.
  • 6. Roeder C. W., Cameron B., Brown C. B(1999) “Composite action in concrete filled tubes” Journal of Structural Engineering, ASCE 125 (5) 477–84
  • 7. Parsley M. A., Yura J. A., Jirsa J. O. (2000) “Push-out behaviour of rectangular concrete-filled steel tubes. Composite and Hybrid Systems” ACI Special Publication (SP-196), American Concrete Institute 87–107.
  • 8. Aly T., Elchalakani M., Thayalan P., Patnaikuni I. (2010) “Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns” Journal of Constructional Steel Research 66 (1): 11–8.
  • 9. Qu X. S., Chen Z. H., Nethercot D. A., Gardner L., Theofanous M. (2013) “Load-reversed push-out tests on rectangular CFST columns” Journal of Constructional Steel Research 81 35–43.
  • 10. Mouli, M., & Khelafi, H. (2007) “Strength of short composite rectangular hollow section columns filled with lightweight aggregate concrete” Engineering Structures, 29(8), 1791–1797.
  • 11. Khodaie, N. (2013) “Effect of the Concrete Strength on the Concrete-Steel Bond in Concrete Filled Steel Tubes” Journal of the Persian Gulf, 4(11), 9–16.
  • 12. Chen, J., Wang, Y., Roeder, C. W., & Ma, J. (2017) “Behavior of normal-strength recycled aggregate concrete filled steel tubes under combined loading”, 130, 23–40
  • 13. Subair, Fayas C. & Paul, M. D. (2016) “An experimental study on the mechanical properties of steel fibered sand replaced of foamed concrete” International Research Journal of Engenieering and Technology, 3(9).
  • 14. Hazlin A. R., Iman A., Mohamad N., Noridah & Goh, W. I., Sia, L. M & Abdul Samad A. A. A., and Ali, N. (2017) “Microstructure and Tensile Strength of Foamed Concrete with added Polypropylene Fibers” MATEC Web of Conferences 03 01013
  • 15. Jaini Z.M., Mokhatar S. N., Yusof A. S. M., Zulkiply S. and Abd Rahman M. H. (2016) “Effect of Pelletized Coconut Fibre on the Compressive Strength of Foamed Concrete”
  • 16. Raupit F., Saggaff A., Tan C. S., Lee Y. L. and Tahir M. M. (2017) “Splitting Tensile Strength of Lightweight Foamed Concrete with Polypropylene Fiber” International Journal Advanced Science Engineering Information Technology 7(2) 424-430.
  • 17. Thomas, J. & Ramaswamy, A. (2007) “Mechanical Properties of Steel Fiber-Reinforced Concrete”, (May), 385–392.
  • 18. Rahman N. A., Khairuddin S. A. A., Jamaluddin N. and Jaini Z. M. (2018), “Strength of Reinforced Fibrous Foamed Concrete-Filled Hollow Section”, Materials Science Forum, Vol 936, 219-223.
  • 19. Jaini, Z. M., Rum, R. H. M. and Boon, K. H. (2017) “Strength and fracture energy of foamed concrete incorporating rice husk ash and polypropylene mega-mesh 55” IOP Conference Series: Materials Science and Engineering, 248, 12005.
  • 20. British Standard Institution (2016) “Metallic materials. Tensile testing. Method of test at room temperature”. London: BS EN ISO 6892-1:2016.
  • 21. Kato, B. (1996) “Column Curves of Steel-Concrete Composite Members”. Journal of Constructional Steel Research, 39(2), 121–135.
  • 22. Lam, D., & Willams, C. (2004) “Experimental Study on Concrete-filled Square Hollow Sections” Journal of Steel and Composite Structures, 4(2), 92–112.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac9074f2-db8e-4f36-a9b0-820181111604
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.