PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Rule-based Classification of Airborne Laser Scanner Data for Automatic Extraction of 3D Objects in the Urban Area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
LiDAR technology has been widely adopted as a proper method for land cover classification. Recently with the development of technology, LiDAR systems can now capture high-resolution multispectral bands images with high-density LiDAR point cloud simultaneously. Therefore, it opens new opportunities for more precise automatic land-use classification methods by utilizing LiDAR data. This article introduces a combining technique of point cloud classification algorithms. The algorithms include ground detection, building detection, and close point classification - the classification is based on point clouds’ attributes. The main attributes are heigh, intensity, and NDVI index calculated from 4 bands of colors extracted from multispectral images for each point. Data of the Leica City Mapper LiDAR system in an area of 80 ha in Quang Xuong town, Thanh Hoa province, Vietnam was used to deploy the classification. The data is classified into eight different types of land use consist of asphalt road, other ground, low vegetation, medium vegetation, high vegetation, building, water, and other objects. The classification workflow was implemented in the TerraSolid suite, with the result of the automation process came out with 97% overall accuracy of classification points. The classified point cloud is used in a workflow to create a 3D city model LoD2 (Level of Detail) afterward.
Rocznik
Tom
Strony
103--114
Opis fizyczny
Bibliogr. 31 poz., rys., tab., zdj.
Twórcy
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
autor
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Natural resources and Environment one member co., ltd, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
  • Hanoi University of Mining and Geology, 18 Vien street, Hanoi, Vietnam
Bibliografia
  • 1. Nguyen Quoc Long, Ropesh Goyal, Bui Khac Luyen, Le Van Canh, Cao Xuan Cuong, Pham Van Chung, Bui Ngoc Quy, Bui Xuan Nam, Influence of Flight Height on The Accuracy of UAV Derived Digital Elevation Model at Complex Terrain, Journal of the Polish Mineral Engineering Society, 1(45): 179 - 186, 2020. DOI: https://doi.org/10.29227/IM-2020-01-27.
  • 2. Le Van Canh, Cao Xuan Cuong, Nguyen Quoc Long, Le Thi Thu Ha, Tran Trung Anh, Xuan-Nam Bui, 2020 – Experimental Investigation on the performance of RTK drones on 3D mapping Openpit coal mines, Journal of the Polish Mineral Engineering Society, 2(46): 65–74. DOI: http://doi.org/10.29227/IM-2020-02-10.
  • 3. Quy Ngoc Bui, Hiep Van Pham, Research on 3D model from unmanned aerial vehicle (UAV) images, Journal of Mining and Geology, 4(58): 1-11, 2017. http://tapchi.humg.edu.vn/vi/archives?article=873
  • 4. Bui Ngoc Quy, Le Dinh Hien, Nguyen Quoc Long, Tong Si Son, Duong Anh Quan, Pham Van Hiep, Phan Thanh Hai, Pham Thi Lan, Method of defining the parameters for UAV point cloud classification algorithm, Journal of the Polish Mineral Engineering Society, 1(46): 49-56, 2020. DOI: https://doi.org/10.29227/IM-2020-02-08.
  • 5. L. Q. Nguyen, 2021. Accuracy assessment of open-pit mine’s digital surface models generated using photos captured by Unmanned Aerial Vehicles in the post-processing kinematic mode (in Vietnamese). Journal of Mining and Earth Sciences, Vol. 62, no. 4, Aug. 2021, p 38-47, doi:10.46326/JMES.2021.62(4).05.
  • 6. Nguyen, Q. L., Le, T. T. H., Tong, S. S., Kim, T. T. H., (2020). UAV Photogrammetry-Based For Open Pit Coal Mine Large Scale Mapping, Case Studies In Cam Pha City, Vietnam. Sustainable Development of Mountain Territories, 12(4), 501-509. DOI: 10.21177/1998-4502-2020-12-4-501-509.
  • 7. Nguyen Q. L., Ropesh G., Bui, K. L, Cao X. C., Le V. C., Nguyen Q. M., Xuan-Nam B., (2021). Optimal Choice of the Number of Ground Control Points for Developing Precise DSM using LightWeight UAV in Small and Medium-Sized Open-Pit Mine. Archives of Mining Sciences, 66 (3), p 369-384, doi: 10.24425/ams.2021.138594.
  • 8. Charaniya, A., Manduchi, R., Lodha, S., 2004. Supervised parametric classification of aerial LiDAR data. In: Proceedings of the IEEE 2004 Conference on Computer Vision and Pattern Recognition Workshop. Vol. 3. Baltimore, pp. 1–8.
  • 9. Garroway, K., Hopkinson, C., Jamieson, R., 2011. Surface moisture and vegetation influences on LiDAR intensity data in an agricultural watershed. Canadian Journal of Remote Sensing 37(3): 275–284.
  • 10. Mazzarini, F., Pareschi, M.T., Favalli, M., Isola, I., Tarquini, S., Boschi, E., 2007. Lava flow identification and aging by means of LiDAR intensity: Mount Etna case. Journal of Geophysical Research: Solid Earth 112 (B2)
  • 11. Lang, M.W., McCarty, G.W., 2009. LiDAR intensity for improved detection of inundation below the forest canopy. Wetlands 29(4): 1166–1178.
  • 12. Burton, D., Dunlap, D.B., Wood, L.J., Flaig, P.P., 2011. LiDAR intensity as a remote sensor of rock properties. Journal of Sedimentary Research 81(5): 339–347.
  • 13. Song, J.H., Han, S.H., Yu, K.Y., Kim, Y.I., 2002. Assessing the possibility of land-cover classification using LiDAR intensity data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34(Part 3/B): 259–262.
  • 14. Minh, N.Q., Hien, L.P., 2011. Land cover classification using LiDAR intensity data and neural network. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 29(4): 429–438.
  • 15. Brennan, R., Webster, T., 2006. Object-oriented land cover classification of LiDAR-derived surfaces. Canadian Journal of Remote Sensing 32(2): 162–172.
  • 16. Yoon, J.-S., Shin, J.-I., Lee, K.-S., 2008. Land cover characteristics of airborne LiDAR intensity data: a case study. IEEE Geoscience and Remote Sensing Letters 5(4): 801–805.
  • 17. Yan, W.Y., Shaker, A., Habib, A., Kersting, A.P., 2012. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing 67, 35–44.
  • 18. Yan, W.Y., Shaker, A., 2014. Radiometric correction and normalization of airborne LiDAR intensity data for improving land cover classification. IEEE Transactions on Geoscience and Remote Sensing 52(10): 7658–7673.
  • 19. Im, J., Jensen, J.R., Hodgson, M.E., 2008. Object-based land cover classification using highposting-density LiDAR data. GIScience & Remote Sensing 45(2): 209–228.
  • 20. Zhou, W., Huang, G., Troy, A., Cadenasso, M., 2009. Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: a comparison study. Remote Sensing of Environment 113(8): 1769–1777.
  • 21. MacFaden, S.W., ONeil-Dunne, J.P., Royar, A.R., Lu, J.W., Rundle, A.G., 2012. High-resolution tree canopy mapping for New York City using LiDAR and object-based image analysis. Journal of Applied Remote Sensing 6(1): 063567–1–063567–23.
  • 22. Zhou, W., July 2013. An object-based approach for urban land cover classification: integrating LiDAR height and intensity data. IEEE Geoscience and Remote Sensing Letters 10(4): 928–931.
  • 23. Hecht, R., Meinel, G., Buchroithner, M.F., 2008. Estimation of urban green volume based on single-pulse LiDAR data. IEEE Transactions on Geoscience and Remote Sensing 46(11): 3832–3840.
  • 24. Huang, M., Shyue, S., Lee, L., Kao, C., 2008. A knowledge-based approach to urban feature classification using aerial imagery with LiDAR data. Photogrammetric Engineering & Remote Sensing 74(12): 1473–1485.
  • 25. Guan, H., Ji, Z., Zhong, L., Li, J., Ren, Q., 2013. Partially supervised hierarchical classification for urban features from LiDAR data with aerial imagery. International Journal of Remote Sensing 34(1): 190–210.
  • 26. Chen, Y., Su, W., Li, J., Sun, Z., 2009. Hierarchical object-oriented classification using very highresolution imagery and LiDAR data over urban areas. Advances in Space Research 43(7): 1101– 1110.
  • 27. Antonarakis, A., Richards, K., Brasington, J., 2008. Object-based land cover classification using airborne LiDAR. Remote Sensing of Environment 112(6): 2988–2998.
  • 28. Singh, K.K., Vogler, J.B., Shoemaker, D.A., Meentemeyer, R.K., 2012. Lidar-Landsat data fusion for large-area assessment of urban land cover: balancing spatial resolution, data volume, and mapping accuracy. ISPRS Journal of Photogrammetry and Remote Sensing 74, 110–121.
  • 29. Sasaki, T., Imanishi, J., Ioki, K., Morimoto, Y., Kitada, K., 2012. Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data. Landscape and Ecological Engineering 8(2): 157–171.
  • 30. Hartfield, K.A., Landau, K.I., Van Leeuwen, W.J., 2011. Fusion of high resolution aerial multispectral and LiDAR data: land cover in the context of urban mosquito habitat. Remote Sensing 3(11): 2364–2383.
  • 31. Yanjing, J., 2015. Object-based Land Cover Classification with Orthophoto and LIDAR Data. Master of Science Thesis in Geoinformatics TRITA-GIT EX 15-001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac8f7e70-8c5d-412f-9f22-e8f604d588d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.