PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strength analysis of critical components of high-pressure fuel pump with hypocycloid drive

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most high-pressure fuel pumps for compression-ignition engines manufactured today are cam driven. These pumps have numerous advantages, such as low energy consumption and limited production costs. However, a problem arising from the nature of the cam mechanism is an unfavorable distribution of forces in the camshaft-plunger-cylinder system of a delivery section. The authors have proposed an innovative pump design that eliminates most of the problems present in conventional solutions. The pump utilizes a gear-based hypocycloid drive. This paper focuses mainly on the strength analysis of the two critical components (countershaft and mount) of the subassembly under the highest load – simulations were carried out for different critical load states. The following procedure of estimating fatigue life was adopted for computations: the operational evolution of stresses will be systematized to the set of amplitude stresses and mean stresses by means of the “Rainflow” method. The results obtained in the work showed that the main factor determining change of stresses was the presence of clearances in the pump mechanism. It has been proved that the values of clearances have a negative influence on the power transmission in particular – their presence results in loads being carried by the countershaft and not by the support inter-operating with it. This may cause frictional wear of teeth, leading to the improper operation of the transmission. The analysis showed that the mount was designed correctly. This facilitates the use of less demanding constructional materials.
Rocznik
Strony
1341--1350
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 61-138 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 61-138 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 61-138 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 61-138 Poznań, Poland
autor
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 61-138 Poznań, Poland
Bibliografia
  • [1] A. Jaworski, H. Kuszewski, A. Ustrzycki, K. Balawender, K. Lejda, and P. Woś, “Analysis of the repeatability of the exhaust pollutants emission research results for cold and hot starts under controlled driving cycle conditions”, Environ. Sci. Pollut. Res. 25(18), 17862‒17877 (2018).
  • [2] H. Kokota, H. Kosaka, K. Tsujimura, and T. Kamimoto, “Fast burning and reduced soot formation via ultra-high pressure diesel fuel injection”, SAE [Tech. Pap.] 910225, 1‒9 (1991).
  • [3] A. Minato, T. Tanaka, and T. Nishimura, “Investigation of pre-mixed lean diesel combustion with ultra-high- pressure injection”, SAE [Tech. Pap.] 2005-01-0914, 1‒9 (2005).
  • [4] A. Bąkowski and L. Radziszewski, “Determining selected diesel engine combustion descriptors based on the analysis of the coefficient of variation of in-chamber pressure”, Bull. Pol. Ac.: Tech. 63(2), 457‒464 (2015).
  • [5] A. Ferrari, P. Pizzo, and R. Vitali, “Development and validation procedure of a 1D predictive model for simulation of a common rail fuel injection system controlled with a fuel metering valve”, SAE Int. J. Engines 11(4), 401‒422 (2018).
  • [6] R.D. Lockett and M. Jeshani, “An experimental investigation into the effect of hydrodynamic cavitation on diesel”, Int. J. Engine Res. 14(6), 606‒621 (2013).
  • [7] Y. Bai, Q. Lan, L. Fan, X. Ma, and H. Liu “Investigation on the fuel injection stability of high pressure common rail system for diesel engines”, Int. J. Engine Res. 1468087419856981 (2019). doi: 10.1177/1468087419856981
  • [8] A. Ferrari and P. Pizzo, “Fully predictive common rail fuel injection apparatus model and its application to global system dynamics analyses”, Int. J. Engine Res. 18(3), 273‒290 (2016).
  • [9] O. Armas, C. Mata, and S. Martínez-Martínez, “Effect of an ethanol–diesel blend on a common-rail injection system”, Int. J. Engine Res. 13(5), 417‒428 (2012).
  • [10] Z. Stelmasiak, “Uniformity of Diesel oil dosage in dual fuel engines”, Eksploat. i Niezawodn. 16(3), 491‒495 (2014).
  • [11] J. Szczepaniak and M. Spadło “The issue of fatigue evaluation of agricultural machines shown in a multi-role unit”, Agric. Eng. 4(139), 411‒420 (2012).
  • [12] E.S. Aziz, “Enhanced hypocycloid gear mechanism for internal combustion engine applications”, J. Mech. Des. 138, 1‒9 (2016).
  • [13] M.A. El Bahloul, E.S Aziz, and C. Chassapis, “Mechanical efficiency prediction methodology of the hypocycloid gear mechanism for internal combustion engine application”, Int. J. Interact. Des. Manuf. 13(1), 221‒233 (2019).
  • [14] D.M. Ruch, F.J. Fronczak, and N.H. Beachley “Design of a Modified Hypocycloid Engine”, SAE [Tech. Pap.] 911810: 73‒90 (1991).
  • [15] W. Karpiuk, R. Smolec, and T. Borowczyk, “High-pressure engine-feeding pump”, Patent No. PL232500, (2018) [in Polish].
  • [16] M. Bor, T. Borowczyk, M. Idzior, W. Karpiuk, and R. Smolec, “Analysis of hypocycloid drive application in a high-pressure fuel pump”, MATEC Web Conf. 118, 00020 (2017).
  • [17] M. Bor, T. Borowczyk, W. Karpiuk, and R. Smolec, “Modeling of selected design characteristics of cam and hypocycloidal drives of high-pressure fuel pumps”, Adv. Sci. Technol. Res. J. 12(2), 128‒136 (2018).
  • [18] M. Bor, T. Borowczyk, W. Karpiuk, M. Spadlo, and R. Smolec, “Concept of a pump for diesel engines fuel supply using hypo-cycloid drive”, IOP Conf. Series: Materials Science and Engineering 421, 042034 (2018).
  • [19] W. Kozak, “Forming the parameters of diesel engines injection”, Poznan Univeristy of Technology Publishing House, Poznań, (2008) [in Polish].
  • [20] W. Kozak, M. Bajerlein, and J. Markowski, “Verification of the concept of spray mechanism assisted with air dissolved in diesel oil”, Combust. Engines, 1/2006(124), 21‒37 (2006).
  • [21] W. Kozak, M. Bajerlein, and J. Markowski, “The application of gas dissolved in fuel with a view to improve the mechanism of spraying” Combust. Engines, 1/2005 (120), 4‒18 (2005).
  • [22] J. Merkisz, W. Kozak, M. Bajerlein, and J. Markowski, “The influence of exhaust gases dissolved in diesel oil on fuel spray particulary parameters”, SAE [Tech. Pap.], 2007-01-0488, 1‒9 (2007).
  • [23] P. Lonkwic, P. Różyło, and H. Dębski, “Numerical and experimental analysis of the progressive gear body with the use of finite-element method”, Eksploat. i Niezawodn. 17 (4), 544‒550 (2015).
  • [24] M. Nowak, “Improved aeroelastic design through structural optimization”, Bull. Pol. Ac.: Tech. 60(2), 237‒240 (2012).
  • [25] W. Ostapski, A. Aromiński, and S. Dowkontt “The vibration of prototype aircraft propeller speed reduction unit – test bench and FEM numerical simulation study”. Bull. Pol. Ac.: Tech. 62(4), 861‒873 (2014).
  • [26] S. Kocańda and J. Szala, “Basics of fatigue calculations”, Scientific Publishers PWN, Warsaw, (1997) [in Polish].
  • [27] L. Rybarska-Rusinek “On evaluation of influence coefficients for edge and intermediate boundary elements in 3D problems involving strong field concentrations”, Bull. Pol. Ac.: Tech. 67(1), 69‒76 (2019).
  • [28] M.W. Brown and K.J. Miller “A theory for fatigue failure under multiaxial stress-strain conditions”, Proceedings of the Institution of Mechanical Engineers, 187, 69‒71 (1973).
  • [29] T.M. Huber, “Proper work of deformation as a measure of material effort”, Technical Journal Lviv, 22, (1904), [in Polish].
  • [30] I. Rychlik, “A new definition of the rainflow cycle counting method”, Int. J. Fatigue 9(2), 119‒121 (1987).
  • [31] M. Tinsdale, P. Price, and R. Chen, “The impact of biodiesel on particle number, size and mass emissions from a Euro4 diesel vehicle”, SAE Int. J. Engines 3(1), 597‒608 (2010).
  • [32] P. Johannesson, “On rainflow cycles and the distribution of the number of interval crossings by a Markov chain”, Probab. Eng. Mech. 17, 123‒130 (2002).
  • [33] M. Mrzygłód “Multi-constrained topology optimization using constant criterion surface algorithm”, Bull. Pol. Ac.: Tech. 60(2), 229‒236 (2012).
  • [34] C. Lalanne “Mechanical vibration and shock analysis”, Vol. 2, Wiley-ISTE, London, (2009).
  • [35] M.A. Meggiolaro and J.T. Castro, “An improved multiaxial rainflow algorithm for non-proportional stress or strain histories – Part I: Enclosing surface methods”, Int. J. Fatigue 42, 217‒226 (2012).
  • [36] J. Badur, M. Bryk, P. Ziółkowski, D. Sławiński, P. Ziółkowski, S. Kornet, and M. Stajnke “On a comparison of Huber-Mises-Hencky with Burzynski Pecherski equivalent stresses for glass body during nonstationary thermal load”, AIP Conference Proceedings, 1822(020002) (2017).
  • [37] M. Spadło, “Adaptation of fatigue analysis methods in the aspect of load stochastics for agricultural machines”, Poznań, Doctoral thesis, (2014) [in Polish].
  • [38] Y.-L. Lee, J. Pan, R. Hathaway, and M. Barkey, “Fatigue testing and analysis. Theory and practice”, Elsevier Butterworth-Heinemann, Burlington, 2005.
  • [39] T. Łagoda and M. Kurek, “Multiaxial random fatigue of machine elements”, Scientific Journal of the Military University of Land Forces, 4(174), 104‒117 (2014).
  • [40] S.S. Manson and G.R. “Halford fatigue and durability of structural materials”, ASM International (2006).
  • [41] D. Skibicki, “Fatigue criterion based on the huber-von mises-hencky criterion for non-proportional loadings”, Journal of Polish CIMAC, 5(3), 177‒186 (2010).
  • [42] N. Vasiraja and P. Nagaraj “The effect of material gradient on the static and dynamic response of layered functionally graded material plate using finite element method”, Bull. Pol. Ac.: Tech. 67(4), 827‒838 (2019).
  • [43] M.E. Niezgodziński and T.B. Niezgodziński, “Formulas, charts and strength tables”, Scientific and Technical Publishers, Warsaw, (2013) [in Polish].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac8de185-2f26-4cce-939d-a286cc529690
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.