PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synthesis and characterization of hydroxyapatite/chitosan composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxyapatite (HAp)/chitosan (CS) composites were synthesized via a one-step co-precipitation method from aqueous solution, with the use of calcium chloride (CaCl2) and disodium hydrogen phosphate (Na2HPO4). CS was obtained via partial deacetylation of chitin with the use of strong sodium hydroxide solution. Composites were prepared with various HAp/CS ratios (30/70, 50/50, 70/30, 85/15) for comprehensive comparison of their properties. Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed that hydrogen bonds were formed between the organic matrix and the mineral compound, confirming a successful phase interconnection. X-ray diffraction patterns were obtained, enabling examination of the crystalline properties of the composites, including HAp identification. The porous structure parameters of the composites were investigated, and morphological analysis (SEM) was performed. Differential Thermal Gravimetry (DTG) analysis of the composites indicated that the material is thermally stable up to 200 oC. Additionally, Energy Dispersive Spectroscopy (EDS) analysis of the mineral was carried out to check the Ca/P ratio, and confirmed its similarity to pure HAp.
Rocznik
Strony
575--585
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60965, Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60965, Poznan, Poland
autor
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60965, Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60965, Poznan, Poland
autor
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60965, Poznan, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60965, Poznan, Poland
autor
  • TU Bergakademie Freiberg, Institute of Experimental Physics, Biomineralogy and Extreme Biomimetics Group, Leipziger Str. 23, 09599 Freiberg, Germany
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Sklodowskiej–Curie 2, PL-60965, Poznan, Poland
Bibliografia
  • BOSE S., TARAFDER S., 2012, Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: A review, Acta Biomater., 8, 1401–1421.
  • DANILCHENKO S. N., KALINKEVICH O. V., POGORELOV M. V., KALINKEVICH A. N., SKLYAR A. M., KALINICHENKO T. G., ILYASHENKO V. Y., STARIKOV V. V., BUMEYSTER V. I., SIKORA V. Z., SUKHODUB L. F., MAMALIS A. G., LAVRYNENKO S. N., RAMSDEN J. J., 2009, Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests, J. Biol. Phys. Chem., 9, 119–126.
  • EHRLICH H., KRAJEWSKA B., HANKE T., BORN R., HEINEMANN S., KNIEB C., WORCH H., 2006, Chitosan membrane as a template for hydroxyapatite crystal growth in a model dual membrane diffusion system, J. Membr. Sci., 273, 124–128.
  • JIN H. H., KIM D. H., KIM T. W., SHIN K. K., JUNG J. S., PARKA H. C., YOON S. Y., 2012, In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering, Int. J. Biol. Macromol., 51, 1079–1085.
  • KATTI K. S., KATTI D. R., DASH R., 2008, Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering, Biomed. Mat., 3, 034122.
  • KONG L., GAO Y., CAO W., GONG Y., ZHAO N., ZHANG X., 2005, Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds, J. Biomed. Mater. Res.; 75A, 275–282.
  • LI X.Y., NAN K.H., SHI S., CHEN H., 2012, Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering, Int. J. Biol. Macromol., 50, 43–49.
  • LI Z., YUBAO L., AIPING Y., XUELIN P., XUEJIANG W., XIANG Z., 2005, Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials, J. Mater. Sci. Mater. Med., 16, 213–219.
  • NARASARAJU T. S. B., PHEBE D. E., 1996, Some physico-chemical aspects of hydroxyapatite, J. Mat. Sci., 31, 1–21.
  • NETO C.G.T., GIACOMETTI J.A., JOB A.E., FERREIRA F.C., FONSECA J.L.C., PEREIRA M.R., 2005, Thermal analysis of chitosan based networks, Carbohydr. Polym., 62, 97–103.
  • NIKPOUR M.R., RABIEE S.M., JAHANSHAHI M., 2012, Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications, Compos.: Part B, 43, 1881–1886.
  • MA G., YANG D., KENNEDY J. F., NIE J., 2009, Synthesize and characterization of organic-soluble acylated chitosan, Carbohydr. Polym., 75, 390–394.
  • MURUGAN R., RAMAKRISHNA S., 2004, Bioresorbable composite bone paste using polysaccharide based nano-hydroxyapatite, Biomat., 25, 3829–835.
  • PANG X., ZHITOMIRSKY I., 2005, Electrodeposition of composite hydroxyapatite–chitosan films, Mater. Chem. Phys., 94, 245–251.
  • PETER M., BINULAL N. S., SOUMYA S., NAIR S. V., FURUIKE T., TAMURA H., JAYAKUMAR R., 2010, Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications, Carbohydr. Polym., 79, 284–289.
  • RIPAMONTI U., RODEN L.C., RENTON L.F., 2012, Osteoinductive hydroxyapatite-coated titanium implants, Biomater., 33, 3813–3823.
  • RUPANI A., BASTIDA L.A.H., RUTTEN F., DENT A., TURNER I., CARTMELL S., 2012, Osteoblast activity on carbonated hydroxyapatite, J. Biomed. Mater. Res. Part A, 100, 1089–1096.
  • WANG T., DORNER-REISEL A., MÜLLER E., 2004, Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder, J. Eur. Ceram. Soc., 24, 693–698.
  • WEI G., MA P.X., 2004, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomater., 25, 4749–4757.
  • ZHANG C. Y., CHEN J., ZHUANG Z., ZHANG T., WANG X. P., FANG Q. F., 2011, In situ hybridization and characterization of fibrous hydroxyapatite/chitosan nanocomposite, J. Appl. Polym. Sci., 124, 397–402.
  • ZHANG Y., VENUGOPAL J. R., EL-TURKIA., RAMAKRISHNA S., SU B., TECK LIM C., 2008, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering; Biomater., 29, 4214–4322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac88feff-2075-4016-8087-f9a561430392
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.