PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

WIMAX network optimization using frame period with channel allocation techniques

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Internet connectivity in WiMAX networks, along with various applications, is increasing rapidly, so the connectivity of internet and data transfer speed are always challenges for effective data transmission in wireless networks. Several factors affect the performance of networks. One important factor is to choose a suitable frame period for effective data transmissions. The performance of different frame periods with Round Robin and Strict Priority is evaluated in this work. A frame period in Round Robin performs better than a Strict Priority in terms of through-put, but a Strict Priority performs better in terms of drop rates. This paper also demonstrates that an effective frame period, when combined with a proper bandwidth allocation algorithm, yields better results. This work gives the analysis that Round Robin performs 83.8847% better while Strict Priority performs 86.0020% better than the earliest deadline first algorithms for 10 subscriber stations in terms of throughput. This work is helpful to researchers and industrialists for actual implementations in WiMAX networks.
Twórcy
  • Department of Computer Science and Engineering, Sangam University, Bhilwara, Rajasthan, India
autor
  • Department of Computer Science and Engineering, Sangam University, Bhilwara, Rajasthan, India
  • Department of Computer Science and Engineering, Medi-Caps University, Indore, Madhya Pradesh, India
Bibliografia
  • [1] “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems,” IEEE Std 802.16-2004 (Revision of IEEE Std 802.16-2001), pp. 1-857, 2004, doi: 10.1109/IEEESTD.2004.226664.
  • [2] “IEEE Standard for Local and Metropolitan Area Networks - Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems - Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004), pp. 1-822, Feb. 2006, doi: 10.1109/IEEESTD.2006.99107.
  • [3] K. M. Ahmed, K. Sarita, and T. Vibha. “Performance Analysis of WiMAX Networks with Relay Station,” International Journal on Recent Trends in Engineering & Technology, vol. 8, no. 1, p. 30, 2013.
  • [4] C. Eklund, R. B. Marks, K. L. Stanwood, and S. Wang. “IEEE standard 802.16: a technical overview of the WirelessMAN/sup TM/ air interface for broadband wireless access,” IEEE Communications Magazine, vol. 40, no. 6, pp. 98-107,Jun. 2002, doi: 10.1109/MCOM.2002.1007415.
  • [5] M. A. Khan, A. Kumar, and K. C. Bandhu. “World-wide Interoperability for Microwave Access network optimization with and without relay station for next generation internet access,”International Journal of Communication Systems, vol. 35, no. 17, p. e5318, 2022, doi: 10.1002/dac.5318.
  • [6] E. L. Hahne. “Round Robin scheduling for fair flow control in data communication networks,”Thesis, Massachusetts Institute of Technology, 1986. accAvailable: https://dspace.mit.edu/handle/1721.1/14932.
  • [7] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. “Weighted Round Robin cell multiplexing in a general-purpose ATM switch chip,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 8, pp. 1265-1279, Oct. 1991, doi: 10.1109/49.105173.
  • [8] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts. Wiley, 2005.
  • [9] P. Goyal, H. M. Vin, and H. Chen. “Start-time fair queueing: a scheduling algorithm for integrated services packet switching networks,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 4, pp. 157-168, Aug. 1996, doi: 10.1145/248157.248171.
  • [10] S. Ahmadi. “An overview of next-generation mobile WiMAX technology,” IEEE Communications Magazine, vol. 47, no. 6, pp. 84-98, Jun. 2009, doi: 10.1109/MCOM.2009.5116805.
  • [11] C. So-In, R. Jain, and A.-K. Tamimi. “A Deficit Round Robin with Fragmentation scheduler for IEEE 802.16e Mobile WiMAX,” in 2009 IEEE Sarnoff Symposium, Mar. 2009, pp. 1-7. doi:10.1109/SARNOF.2009.4850308.
  • [12] J. Rakesh, W. V. A., and U. Dalal. “A Survey of Mobile WiMAX IEEE 802.16m Standard.” arXiv, May 06, 2010. doi: 10.48550/arXiv.1005.0976.
  • [13] R. Nandhini and N. Devarajan. “Comparison for WiMAX Scheduling Algorithms and Proposal Quality of Service Improvement in WiMAX Networks,” AJAS, vol. 11, no. 1, pp. 8-16, Nov. 2013, doi: 10.3844/ajassp.2014.8.16.
  • [14] H. K. Rath and A. Karandikar. “Performance analysis of TCP and UDP-based applications in a IEEE 802.16 deployed network,” in 2011 The 14th International Symposium on Wireless Personal Multimedia Communications (WPMC), Oct. 2011,pp. 1-5. Available: https://ieeexplore.ieee.org/document/6081520.
  • [15] N. Mazhar, M. Zeeshan, and A. Naveed. “Performance Impact of Relay Selection in WiMAX IEEE 802.16j Multi-hop Relay Networks,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 10, no. 9, Art. no.9, 36/30 2019, doi: 10.14569/IJACSA.2019.0100950.
  • [16] D. Rathore, A. Shukla, and G. Jaiswal. “Performance Evaluation of Weighted Round Robin Scheduling for WiMAX Networks Using Qualnet Simulator 6.1,” IOSR Journal of Electronics and Communication Engineering, vol. 9, pp. 77-81, Jan. 2014, doi: 10.9790/2834-09257781.
  • [17] Z. Tao, A. Li, K. H. Teo, and J. Zhang. “Frame Structure Design for IEEE 802.16j Mobile Multihop Relay (MMR) Networks,” in IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference, Nov. 2007, pp. 4301-4306. doi: 10.1109/GLOCOM.2007.818.
  • [18] R. Mahmood, M. Tariq, and M. Khiyal. “A Novel Parameterized QoS based Uplink and Downlink Scheduler for Bandwidth/Data Management over IEEE 802.16 d Network,”International Journal of Recent Trends in Engineering, vol. 2, pp. 42-46, Nov. 2009.
  • [19] P. Kolomitro, M. T. Abd-Elhamid, and H. Hassanein. “A performance comparison of frame structures in WiMax relay networks,” in IEEE Local Computer Network Conference, Oct. 2010, pp. 769-776. doi: 10.1109/LCN.2010.5735810.
  • [20] A. F. Bayan and T.-C. Wan. “A scalable QoS scheduling architecture for WiMAX multi-hop relay networks,” in 2010 2nd International Conference on Education Technology and Computer, Jun. 2010, pp. V5-326-V5-331. doi:10.1109/ICETC.2010.5530061.
  • [21] P. Mach and R. Bestak. “Radio resources allocation for decentrally controlled relay stations,” Wireless Netw, vol. 17, no. 1, pp. 133-148, Jan.2011, doi: 10.1007/s11276-010-0269-8.
  • [22] N. Ahmed, M. Ali Shah, and S. Zhang. “Efficient Deployment of Relay Stations in IEEE802.16m for Cost Effective Performance,” Procedia Computer Science, vol. 10, pp. 992-997, Jan. 2012, doi: 10.1016/j.procs.2012.06.135.
  • [23] Khan Mubeen Ahmed and Bandhu Kailash Chandra. “Analysis of WiMAX Networks with Bandwidth Allocation Algorithms (Round Robin and Strict Priority),” International Journal of Recent Technology and Engineering, vol. 8, no. 4, pp. 19-22, Jun. 2019.
  • [24] A. Sayenko, O. Alanen, and T. Hämäläinen. “Scheduling solution for the IEEE 802.16 base station,” Computer Networks, vol. 52, no. 1, pp. 96-115, Jan. 2008, doi: 10.1016/j.comnet.2007.09.021.
  • [25] D. Vandana and M. Sharma. “Round Robin CPU Scheduling with Dynamic Quantum using Vague Sets,” International Journal of Advanced Science and Technology, vol. 29, pp. 9940-9950, Jul. 2020.
  • [26] Y.-C. Lai and Y.-H. Chen. “Designing and Implementing an IEEE 802.16 Network Simulator for Performance Evaluation of Bandwidth Allocation Algorithms,” in 2009 11th IEEE International Conference on High Performance Computing and Communications, Jun. 2009, pp. 432-437. doi:10.1109/HPCC.2009.40.
  • [27] K. C. Bandhu and R. G. Vishwakarma. “Performance evaluation of TCP Vegas in WiMAX network asymmetry,” IJWMC, vol. 10, no. 2, p. 97, 2016, doi: 10.1504/IJWMC.2016.076165.
  • [28] K. C. Bandhu. “Performance Comparison of Transmission Control Protocol Variants in WiMAX Network with Bandwidth Asymmetry,”in International Conference on Advanced Computing Networking and Informatics, R. Kamal, M. Henshaw, and P. S. Nair, Eds., in Advances in Intelligent Systems and Computing. Singapore: Springer, 2019, pp. 247-261. doi:10.1007/978-981-13-2673-8_27.
  • [29] S. R. Das, C. E. Perkins, and E. M. Belding-Royer. “Ad hoc On-Demand Distance Vector (AODV) Routing,” Internet Engineering Task Force, Request for Comments RFC 3561, Jul. 2003. doi: 10.17487/RFC3561.
  • [30] S. A. Ahson and M. Ilyas. WiMAX: Technologies, Performance Analysis, and QoS. CRC Press, 2018.
  • [31] A. Kumar. Mobile Broadcasting with WiMAX: Principles, Technology, and Applications. Taylor & Francis, 2014.
  • [32] K. C. Bandhu and R. G. Vishwakarma. “The Impact of Cyclic Prefix, Modulation Coding Scheme, Frame Duration, Two Way Transfer and Propagation Model with Network Asymmetry in Wimax Network using TCP New Reno,” International Journal of Engineering Research & Technology, vol. 3, no. 3, Mar. 2014, doi: 10.17577/IJERTV3IS030495.
  • [33] Kailash Chandra Bandhu and Rajeev G. Vishwakarma. “Performance Evaluation of TCP Sack1 in WiMAX Network Asymmetry,” International Journal of Research in Engineering and Technology, vol. 3, no. 2, pp. 112-120, Dec. 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac88dfe3-17d3-4dbe-a876-ac878bd5afe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.