PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Disruptions in brain functional connectivity: The hidden risk for oxygen-intolerant professional divers in simulated deep water

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we investigated the effects of oxygen toxicity on brain activity and functional connectivity (FC) in divers using a closed-circuit oxygen breathing apparatus. We acquired and analyzed electroencephalographic (EEG) signals from a group of normal professional divers (PD) and a group that developed oxygen intolerance, i.e., oxygen-intolerant professional divers (OPD), to evaluate the potential risk of a dive and understand the physiological mechanisms involved. The results highlighted a significant difference in the baseline levels of α rhythm between PD and OPD, with PD exhibiting a lower level to counteract the effects of increased O2 inhalation, while OPD showed a higher level that resulted in a pathological state. Connectivity analysis revealed a strong correlation between cognitive and motor regions, and high levels of α synchronization at rest in OPDs. Our findings suggest that a pathological condition may underlie the higher α levels observed in these individuals when facing the stress of high O2 inhalation. These findings support the hypothesis that oxygen modulates brain networks, and have important implications for understanding the neural mechanisms involved in oxygen toxicity. The study also provides a unique opportunity to investigate the impact of neurophysiological activity in simulated critical scenarios, and opens up new perspectives in the screening and monitoring of divers.
Twórcy
  • Department of Neuroscience, Section of Rehabilitation, University of Padova, Italy
  • Department of Neurological Sciences, University of Rome, La Sapienza, Italy
  • Italian Navy Medical Service Comsubin Varignano, Le Grazie (La Spezia), Italy
  • Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy
  • Department of Engineering for Innovation Medicine, University of Verona, Italy
Bibliografia
  • [1] Formaggio E, Storti SF, Pastena L, Melucci M, Ricciardi L, Faralli F, et al. How expertise changes cortical sources of EEG rhythms and functional connectivity in divers under simulated deep-sea conditions. IEEE Trans Neural Syst Rehabil Eng 2019;27(3):450-6.
  • [2] Pastena L, Formaggio E, Storti SF, Faralli F, Melucci M, Gagliardi R, et al. Tracking EEG changes during the exposure to hyperbaric oxygen. Clin Neurophysiol 2015;126(2):339-47.
  • [3] Rostain JC, Gardette-Chauffour MC, Lemaire C, Naquet R. Effects of a H2-He-O2 mixture on the HPNS up to 450 msw. Undersea Biomed Res 1988;15(4):257-70.
  • [4] Pastena L, Formaggio E, Faralli F, Melucci M, Rossi M, Gagliardi R, et al. Bluetooth communication interface for EEG signal recording in hyperbaric chambers. IEEE Trans Neural Syst Rehabil Eng 2015;23(4):538-47.
  • [5] Seo H-J, Bahk W-M, Jun T-Y, Chae J-H. The effect of oxygen inhalation on cognitive function and EEG in healthy adults. Clin Psychopharmacol Neurosci 2007;5(1):25-30.
  • [6] Kaskinoro K, Maksimow AT, Scheinin H, Laitio RM, Aantaa R, Kärki T, et al. Normobaric hyperoxia does not induce significant electroencephalogram changes in healthy male subjects. Internet J Neurosurg 2008;6.
  • [7] Sheng M, Liu P, Mao D, Ge Y, Lu H. The impact of hyperoxia on brain activity: A resting-state and task-evoked electroencephalography (EEG) study. PLoS One 2017;12(5):e0176610.
  • [8] Manning EP. Central nervous system oxygen toxicity and hyperbaric oxygen seizures. Aerosp Med Hum Perform 2016;87(5):477-86.
  • [9] Wingelaar TT, van Ooij PAM, van Hulst RA. Oxygen toxicity and special operations forces diving: Hidden and dangerous. Front Psychol 2017;8:1263.
  • [10] Jain KK. High-pressure neurological syndrome (HPNS). Acta Neurol Scand 1994;90(1):45-50.
  • [11] Visser G, Van Hulst R, Wieneke G, Van Huffelen A. The contribution of conventional and quantitative electroencephalography during monitoring of exposure to hyperbaric oxygen. Undersea Hyperbaric Med: J Undersea Hyperbaric Med Soc Inc 1996;23(2):91-8.
  • [12] Vrijdag XCE, van Waart H, Sames C, Mitchell SJ, Sleigh JW. Does hyperbaric oxygen cause narcosis or hyperexcitability? A quantitative EEG analysis. Physiol Rep 2022;10(14):e15386.
  • [13] Ozaki H, Watanabe S, Suzuki H. Topographic EEG changes due to hypobaric hypoxia at simulated high altitude. Electroencephalogr Clin Neurophysiol 1995;94(5):349-56.
  • [14] Kraaier V, Van Huffelen A, Wieneke G. Quantitative EEG changes due to hypobaric hypoxia in normal subjects. Electroencephalogr Clin Neurophysiol 1988;69(4):303-12.
  • [15] Moon RE. Treatment of diving emergencies. Crit Care Clin 1999;15(2):429-56. http://dx.doi.org/10.1016/S0749-0704(05)70062-2, URL https://www. sciencedirect.com/science/article/pii/S0749070405700622.
  • [16] Berenji Ardestani S, Balestra C, Bouzinova EV, Loennechen Ø, Pedersen M. Evaluation of divers’ neuropsychometric effectiveness and high-pressure neurological syndrome via computerized test battery package and questionnaires in operational setting. Front Physiol 2019;10. http://dx.doi.org/10.3389/fphys.2019. 01386, URL https://www.frontiersin.org/articles/10.3389/fphys.2019.01386.
  • [17] Ozgok Kangal M, Murphy-Lavoie H.
  • [18] Shi ZY, Zhao DM, Mei XH, Liu ZR, Shen TM. The influence of N2-O2 and HeO2 saturation diving on electroencephalogram of human bodies. Sci China B 1989;32(12):1436-48.
  • [19] Friston KJ. Functional and effective connectivity: A review. Brain Connect 2011;1(1):13-36.
  • [20] Frei E, Gamma A, Pascual-Marqui R, Lehmann D, Hell D, Vollenweider FX. Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum Brain Mapp 2001;14(3):152-65.
  • [21] Rossini PM, Di Iorio R, Bentivoglio M, Bertini G, Ferreri F, Gerloff C, et al. Methods for analysis of brain connectivity: An IFCN-sponsored review. J Clin Neurophysiol 2019;130(10):1833-58.
  • [22] Pascual-Marqui R. Coherence and phase synchronization: Generalization to pairs of multivariate time series, and removal of zero-lag contributions. 2007.
  • [23] Storti SF, Formaggio E, Pastena L, Melucci M, Ricciardi L, Faralli F, et al. Expertise-related global efficiency of functional brain networks in professional and new divers under simulated deep-water. In: 2019 IEEE 16th international symposium on biomedical imaging. IEEE; 2019, p. 147-50.
  • [24] World Medical Association, et al. World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 2013;310(20):2191-4.
  • [25] Pascual-Marqui RD, et al. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods Find Exp Clin Pharmacol 2002;24(Suppl D):5-12.
  • [26] Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int J Psychophysiol 1994;18(1):49-65.
  • [27] Mazziotta JC, Toga AW, Evans A, Fox P, Lancaster J, et al. A probabilistic atlas of the human brain: Theory and rationale for its development. Neuroimage 1995;2(2):89-101.
  • [28] Pascual-Marqui R. Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: Frequency decomposition. 2011, 2007 Available: http://arxiv.org/abs/0711.1455.
  • [29] Garey LJ. Brodmann’s’ localisation in the cerebral cortex’. World Scientific; 1999.
  • [30] Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherency. J Clin Neurophysiol 2004;115(10):2292-307.
  • [31] Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave de Peralta R. EEG source imaging. J Clin Neurophysiol 2004;115(10):2195-222.
  • [32] Balestra C, Kot J, Efrati S, Guerrero F, Blatteau J-E, Besnard S. Editorial: Extreme environments in movement science and sport psychology. Front Psychol 2018;9. http://dx.doi.org/10.3389/fpsyg.2018.02391, URL https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02391.
  • [33] Storti SF, Formaggio E, Melucci M, Faralli F, Ricciardi L, Menegaz G, et al. Alterations of source and connectivity EEG patterns under simulated deep-SEA condition. In: 2015 IEEE 12th international symposium on biomedical imaging. 2015, p. 339-42.
  • [34] Formaggio E, Storti SF, Pastena L, Melucci M, Ricciardi L, Faralli F, Gagliardi R, et al. How expertise changes cortical sources of EEG rhythms and functional connectivity in divers under simulated deep-sea conditions. IEEE Trans Neural Syst Rehabil Eng 2019;27(3):450-6.
  • [35] Neubauer AC, Fink A. Intelligence and neural efficiency. Neurosci Biobehav Rev 2009;33(7):1004-23.
  • [36] Del Percio C, Babiloni C, Bertollo M, Marzano N, Iacoboni M, Infarinato F, et al. Visuo-attentional and sensorimotor alpha rhythms are related to visuo-motor performance in athletes. Hum Brain Mapp 2009;30(11):3527-40.
  • [37] Berger H. Electroencephalogram of humans. J fur Psychol Neurol 1930;40:160-79.
  • [38] Klimesch W. EEG-alpha rhythms and memory processes. Int J Psychophysiol 1997;26(1-3):319-40.
  • [39] Suffczynski P, Kalitzin S, Pfurtscheller G, Da Silva FL. Computational model of thalamo-cortical networks: Dynamical control of alpha rhythms in relation to focal attention. Int J Psychophysiol 2001;43(1):25-40.
  • [40] Pfurtscheller G, Neuper C, Krausz G. Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol 2000;111(10):1873-9.
  • [41] Duan F, Huang Z, Sun Z, Zhang Y, Zhao Q, Cichocki A, et al. Topological network analysis of early Alzheimerś disease based on resting-state EEG. IEEE Trans Neural Syst Rehabil Eng 2020;28(10):2164-72.
  • [42] Grabot L, Kayser C. Alpha activity reflects the magnitude of an individual bias in human perception. J Neurosci 2020;40(17):3443-54. http://dx.doi.org/10. 1523/JNEUROSCI.2359-19.2020, arXiv:https://www.jneurosci.org/content/40/17/3443.full.pdf. URL https://www.jneurosci.org/content/40/17/3443.
  • [43] Rockswold SB, Rockswold GL, Zaun DA, Zhang X, Cerra CE, Bergman TA, et al. A prospective, randomized clinical trial to compare the effect of hyperbaric to normobaric hyperoxia on cerebral metabolism, intracranial pressure, and oxygen toxicity in severe traumatic brain injury. J Neurosurg 2010;112(5):1080-94.
  • [44] Arieli R, Yalov A, Goldenshluger A. Modeling pulmonary and CNS O(2) toxicity and estimation of parameters for humans. J Appl Physiol (1985) 2002;92(1):248-56.
  • [45] Harabin AL, Survanshi SS, Homer LD. A model for predicting central nervous system oxygen toxicity from hyperbaric oxygen exposures in humans. Toxicol Appl Pharmacol 1995;132(1):19-26.
  • [46] Butler FK, Knafelc ME. Screening for oxygen intolerance in U.S. navy divers. Undersea Biomed Res 1986;13(1):91-8.
  • [47] Walters KC, Gould MT, Bachrach EA, Butler FK. Screening for oxygen sensitivity in U.S. navy combat swimmers. Undersea Hyperb Med 2000;27(1):21-6.
  • [48] Arieli R, Eynan M, Ofir D, Arieli Y. Brief screening test of ventilatory sensitivity to CO2 cannot replace the mandatory test for susceptibility to CNS oxygen toxicity. Mil Med 2014;179(8):926-32.
  • [49] Eynan M, Krinsky N, Biram A, Arieli Y, Arieli R. A comparison of factors involved in the development of central nervous system and pulmonary oxygen toxicity in the rat. Brain Res 2014;1574:77-83.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac822e1c-4d5d-42aa-8aaf-1cda1ca8d128
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.