PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Investigation on the Gas Field Generated by High Pressure Gas Atomizer Focused on Physical Mechanisms of Gas Recirculation and Wake Closure Phenomenon

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Physical mechanisms of gas recirculation and wake closure were investigated by modeling the gas field generated by High Pressure Gas Atomizer using computational fluid dynamics. A recirculation mechanism based on axial and radial gas pressure gradient was proposed to explain the gas recirculation. The occurrence of wake closure is regarded as a natural result when elongated wake is gradually squeezed by expansion waves of increasing intensity. An abrupt drop could be observed in the numerical aspiration pressure curve, which corresponds well with the experimental results. The axial gradient of gas density is considered as the reason that results in the sudden decrease in aspiration pressure when wake closure occurs. Lastly, it is found that a shorter protrusion length and a smaller melt tip diameter would lead to a smaller wake closure pressure, which could benefit the atomizer design to produce fine metal powder with less gas consumption.
Twórcy
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology, Shanghai 200444, China
autor
  • Shanghai Jiao Tong University, Institute of Forming Technology and Equipment, 1954 Huashan Road, Shanghai 200030, China
Bibliografia
  • [1] K. Kassym, A. Perveen, Mater. Today Proc. 26, 1727-1733 (2020).
  • [2] A.M. Mullis, L. Farrell, R.F. Cochrane, N.J. Adkins, Metall. Mater. Trans. B 44 (4), 992-999 (2013).
  • [3] D. Beckers, N. Ellendt, U. Fritsching, V. Uhlenwinkel, Adv. Powder Technol. 31 (1), 300-311 (2020).
  • [4] B. Zheng, Y. Lin, Y. Zhou, E.J. Lavernia, Metall. Mater. Trans. B 40 (5), 768-778 (2009).
  • [5] N. Zeoli, S. Gu, Comput. Mater. Sci. 38 (2), 282-292 (2006).
  • [6] S. Hussain, C. Cui, L. He, L. Mädler, V. Uhlenwinkel, J. Mater. Process. Technol. 282 (116677), 1-8 (2020).
  • [7] G.S.E. Antipas, Powder Metall. 56 (4), 317-330 (2013).
  • [8] M. Jeyakumar, G.S. Gupta, S. Kumar, J. Mater. Process. Technol. 203 (1/3), 471-479 (2008).
  • [9] J. Ting, I.E. Anderson, Mater. Sci. Eng. A 379 (1-2), 264-276 (2004).
  • [10] D. Schwenck, N. Ellendt, J. Fischer-Bühner, P. Hofmann, V. Uhlenwinkel, Powder Metall. 60 (3), 198-207 (2017).
  • [11] Q. Xu, D. Cheng, G. Trapaga, N. Yang, E.J. Lavernia, J. Mater. Res. 17 (1), 156-166 (2002).
  • [12] S. Motaman, A.M. Mullis, R.F. Cochrane, D.J. Borman, Metall. Mater. Trans. B 46 (4), 1990-2004 (2015).
  • [13] C. Cui, F. Cao, Q. Li, J. Mater. Process. Technol. 137 (1-3), 5-9 (2003).
  • [14] O. Aydin, R. Unal, Comput. Fluids 42 (1), 37-43 (2011).
  • [15] R. Kaiser, C. Li, S. Yang, D. Lee, Adv. Powder Technol. 29 (3), 623-630 (2018).
  • [16] G.S.E. Antipas, Comput. Mater. Sci. 46 (4), 955-959 (2009).
  • [17] J. Ting, M.W. Peretti, W.B. Eisen, Mater. Sci. Eng. A 326 (1), 110-121 (2002).
  • [18] A. Aksoy, R. Ünal, Powder Metall. 49 (4), 349-354 (2006).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac81953d-1f9c-4f12-a765-289adcfde21e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.