PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of 3d Model Geometry on Dimensional and Shape Characteristics in Additive Manufacturing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Quality of 3d model in simple way translates into quality of final product, obtained from 3d printing. 3d CAx software give possibility to create enormous number of shapes - doesn’t matter solids or surfaces. The question is where is the frontier between quality of 3d model and a value for money of the completed print? Is it always necessary to create as good model as possible? This paper will focus on preparation of 3d models, based on primitives and will show connection between quality of mesh, its size and deviations and quality of obtained samples, in same manufacturing conditions.
Słowa kluczowe
Twórcy
  • Częstochowa University of Technology, Faculty of Technology and Automation, 21. Armii Krajowej Av., 42-201 Częstochowa, Poland
Bibliografia
  • [1] https://www.alpha-cure.com/ (accessed: 10 05 2020).
  • [2] https://rimotec.nl/uv-curing/ (accessed: 12 05 2020).
  • [3] V. Gupta, P. Nesterenko, B. Paull, 3D Printing in Chemical Sciences: Applications Across Chemistry, Royal Society of Chemistry, (2019). DOI: https://doi.org/10.1039/9781788015745
  • [4] H. Kodama, Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer, Review of Scientific Instruments 52, 1770-1773 (1981). DOI: https://doi.org/10.1063/1.1136492
  • [5] https://www.3dsystems.com/our-story (accessed: 14 05 2020).
  • [6] H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, X. Zhu, Photo-curing 3D printing technique and its challenges, Bioactive Materials 5, (1), 110-115 (March 2020). DOI: https://doi.org/10.1016/j.bioactmat.2019.12.003
  • [7] G.A. Appuhamillage, MSc New 3D printable polymeric materials for fused filament fabrication (FFF), Virginia Polytechnic Institute and State University, (2018). DOI: https://doi.org/10.1016/j.bioactmat.2019.12.003
  • [8] D.T. Pham, S.S. Dimov, Rapid Manufacturing. The technologies and applications of rapid prototyping and rapid tooling, 2011 Springer, London.
  • [9] C. Wu, R. Yi, Y-J. Liu, Y. He, C. C.L. Wang, Delta DLP3D printing with large size, 2155-2160, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2016). DOI: https://doi.org/10.1109/IROS.2016.7759338
  • [10] J.M. Florence, L.A. Yoder, Display system architectures for digital micromirror device (DMD)-based projectors, 193-216, Proc. SPIE 2650, Projection Displays II, (29 March 1996). DOI: https://doi.org/10.1117/12.237004
  • [11] R.M. Mainur, MSc, Statistical analysis of the digital micromirror devices hinge sag phenomenon, Texas Tech University, (05-2002).
  • [12] Z. Zhou, Z. Wang, L. Lin, Microsystems and Nanotechnology, Springer Science & Business Media, (2012).
  • [13] Advanced DLP for superior 3d printing, envisiontec.com (accessed: 15 05 2020).
  • [14] N. Zamani, CATIA V5 FEA Tutorials Release 20, SDC Publications, (March 21 2011).
  • [15] www.rapidshape.de/Datasheet_D20 (accessed: 24 02 2020)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac7f9829-6142-45ea-9820-9905d82eac20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.