PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term changes in the total development time of Copepoda species occurring in large numbers in the Southern Baltic Sea : numerical calculations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study presents changes in the total development time of Copepoda species, i.e. Pseudocalanus sp., Temora longicornis and Acartia spp. occurring in large numbers in the Southern Baltic Sea. The following factors were taken into account: temperature, salinity and concentration of food. The presented research involved simulations with greenhouse gas emissions scenarios A1B and B1. The analysis was performed for naupliar and copepodid stages combined together, and the results present the total development time of organisms from the naupliar stage to the adult form. The calculations were carried out using numerical methods based on the experimental data available in the literature.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
  • Institute of Oceanology of the Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
  • University of Gdańsk, Faculty of Oceanography and Geography, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
autor
autor
  • Maritime Institute, ul. Długi Targ 41/42, 80-830 Gdańsk, Poland
autor
  • University of Gdańsk, Faculty of Oceanography and Geography, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
autor
  • Institute of Oceanology of the Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • [1]. Belkin, I.M. (2009). Rapid warming of Large Marine Ecosystems. Progress in Oceanography. 81: 207-213. DOI: 10.1093/ icesjms/fst002.
  • [2]. Bucklin, A., Frost, B., Bradford-Grieve, J., Allen, L. & Copley, N. (2003). Molecular systematic and phylogenetic assessment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Marine Biology. 142: 333-343. DOI: 10.1007/s00227-002-0943-1.
  • [3]. Casini M., Cardinale, M. & Arrhenius, F. (2004). Feeding preferences of herring (Clupea harengus) and sprat (Sprattus sprattus) in the southern Baltic Sea. ICES Journal of Marine Science. 61: 1267-1277. DOI : 10.1016/j.icesjms.2003.12.011.
  • [4]. Casini, M., Cardinale, M. & Hjelm, J. (2006). Inter-annual variation in herring, Clupea harengus, and sprat, Sprattus sprattus, condition in the central Baltic Sea: what gives the tune? Oikos. 112: 638-650. DOI: 10.1111/j.0030- 1299.2006.13860.x.
  • [5]. Chinnery, F. & Williams, J. (2004). The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Marine Biology. 145: 733-738. DOI: 10.1007/ s00227-004-1354-2.
  • [6]. Christensen, V. & Walters, C. (2004). Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling. 172: 109-139. DOI: 10.1016/j.ecolmodel.2003.09.003.
  • [7]. Dzierzbicka-Glowacka, L. (2004). Growth and development of copepodite stages of Pseudocalanus spp. Journal of Plankton Research. 26: 49-60. DOI: 10.1093/plankt/fbh002.
  • [8]. Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M.I. (2009). Parameterisation of a population model for Acartia spp. in the southern Baltic Sea. Part 1. Development time. Oceanologia. 51: 165-184.
  • [9]. Dzierzbicka-Glowacka, L., Lemieszek, A. & Żmijewska, M.I. (2011). Development and growth of Temora longicornis: numerical simulations using laboratory culture data. Oceanologia. 53: 137-161.
  • [10]. Dzierzbicka-Glowacka, L., Pskozub, J., Jakacki, J., Mudrak, S. & Żmijewska, I. (2012). Spatiotemporal distribution of copepod populations in the Gulf of Gdansk (southern Baltic Sea). Journal of Oceanography. 68: 887-904. DOI: 10.1007/ s10872-012-0142-8.
  • [11]. Dzierzbicka-Glowacka, L., Janecki, M., Nowicki, A. & Jakacki, J. (2013a). Activation of the operational ecohydro dynamic model (3D CEMBS) - the hydrodynamic part. Oceanologia. 55: 519-541.
  • [12]. Dzierzbicka-Glowacka, L., Janecki, M., Nowicki, A. & Jakacki, J. (2013). Activation of the operational ecohydro dynamic model (3D CEMBS) - the ecosystem module. Oceanologia. 55: 543-572.
  • [13]. Dzierzbicka-Glowacka, L., Lemieszek, A., Musialik, M. & Żmijewska, I. (2013). Modelling of egg production by Temora longicornis from the southern Baltic Sea including salinity. Oceanological and Hydrobiological Studies. 42: 277¬288. DOI: 10.2478/s13545-013-0084-9.
  • [14]. Elken, J. & Matthäus, W (2008). Assessment of Climate Change for the Baltic Sea Basin: A1.1. Baltic Sea Oceanography. Regional Climate Studies: 379-383.
  • [15]. Figiela, M. (2013). Długoterminowe zmiany struktury troficznej Zatoki Puckiej. Unpublished master thesis. University of Gdańsk, Gdynia, Poland.
  • [16]. Flinkman, J., Aro, E., Vuorinen, I. & Viitasalo, M. (1998). Changes in the northern Baltic zooplankton and herring nutrition from 1980s to 1990s: top-down and bottom-up processes at work. Marine Ecology Progress Series. 163: 127-136.
  • [17]. Fonselius, S., Valderrama, J. (2003). One hundred years of hydrographic measurements in the Baltic Sea. Journal of Sea Research. 49: 229-241. DOI: 10.1016/S1385-1101(03)00035- 2.
  • [18]. Harris, R.P. & Paffenhöfer, G.A. (1976a). Feeding., growth and reproduction of the marine planktonic copepod Temora longicornis Müller. Journal of the Marine Biological Association of the U. K. 56: 675-690. DOI: 10.1017/ S0025315400020725.
  • [19]. Harris, R.P. & Paffenhöfer, G.A. (1976b). The effect of food concentration on cumulative ingestion and growth efficiency of two small marine planktonic copepods. Journal of the Marine Biological Association of the U. K. 56: 875-888. DOI: 10.1017/S0025315400020920.
  • [20]. Hollweg, H., Bohm, U., Fast, I., Hennemuth, B., Keuler, K.M. & Wundram, C. (2008). Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Technical Report No. 3, Model and Data Group at the Max Planck Institute for Meteorology, Hamburg, p 52-56.
  • [21]. Holmborn, T., Goestze, E., Pöllupüü, M. & Pöllumäe, A. (2011). Genetic species identification and low genetic diversity in Pseudocalanus acuspes of the Baltic Sea. Journal of Plankton Research. 33: 507-515. DOI: 10.1093/plankt/fbq113.
  • [22]. Holste, L., Peck, M., St John, M. & Campbell, R. (2009a). The effects of temperature and salinity on reproductive success of Temora longicornis in the Baltic Sea: a copepod coping with a tough situation. Marine Biology. 156: 527-540. DOI: 10.1007/s00227-008-1101-1.
  • [23]. Kalarus, M. (2010). Czasowo-przestrzenne zróżnicowanie holoplanktonu zwierzęcego w wodach Zatoki Gdańskiej (część zachodnia) w 2006 roku. Unpublished master thesis. University of Gdańsk, Gdynia, Poland.
  • [24]. Klein Breteler, WC.M, Gonzales, S.R. & Schogt, N. (1995). Development of Pseudocalanus elongatus (Copepoda, Calanoida) cultured at different temperature and food conditions. Marine Ecology Progress Series. 119: 99-110. DOI: 10.3354/meps119099.
  • [25]. Martynova, D., Kazus, N., Bathmann, U., Graeve, M. & Sukhotin, A. (2011) Seasonal abundance and feeding patterns of copepods Temora longicornis, Centropages hamatus and Acartia spp. in the White Sea (66°N). Polar Biology. 34: 1175-1195. DOI: 10.1007/s00300-011-0980-7.
  • [26]. Möllmann, C., Kornilovs, G., Fetter, M., Köster, F. & Hinrichsen, H. (2003). The marine copepod, Pseudocalanus elongatus, as a mediator between climate variability and fisheries in the Central Baltic Sea. Fisheries Oceanography. 12: 360-368. DOI: 10.1046/j.1365-2419.2003.00257.x.
  • [27]. Möllmann, C., Fetter, M., Kornilovs, G, Köster, F. & Hinrichsen, H. (2003). Feeding ecology of central Baltic Sea herring and sprat. Journal of Fish Biology. 65: 1563-1581. DOI: 10.1111/j.0022-1112.2004.00566.x.
  • [28]. Möllmann, C., Fetter, M., Kornilovs, G., Köster, F. & Hinrichsen, H. (2005). Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. Journal of Marine Science. 62: 1270¬1280. DOI: 10.1016/j.icesjms.2005.04.021.
  • [29]. Mudrak, S. (2004). Short- and long-term variability of zooplankton in coastal Baltic waters: using the Gulf of Gdańsk as an example. Unpublished doctoral dissertation. University of Gdańsk, Gdynia, Poland.
  • [30]. Paffenhöfer, G.A. & Harris, R.P. (1976). Feeding, growth and reproduction of the marine planktonic copepod Pseudocalanus elongatus (Boeck), Journal of the Marine Biological Association of the U. K. 56: 327-344.
  • [31]. Renusz, A. (2010). Czasowo-przestrzenne zróżnicowanie holoplanktonu zwierzęcego w wodach Zatoki Gdańskiej (część zachodnia) w 2007 roku. Unpublished master thesis. University of Gdańsk, Gdynia, Poland.
  • [32]. Thompson, B. (1982). Growth and development of Pseudocalanus elongatus and Calanus sp. in the laboratory. Journal of the Marine Biological Association of the U. K. 62: 359-372. DOI: 10.1017/S0025315400057337.
  • [33]. Vidal, J. (1980a). Physioecology of zooplankton. I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Marine Biology. 56: 111-134. DOI: 10.1007/BF00397129.
  • [34]. Vidal, J. (1980b). Physioecology of zooplankton. II. Effects of phytoplankton concentration, temperature, and body size on the development and molting rates of Calanus pacificus and Pseudocalanus spp. Marine Biology. 56: DOI: 135-14 10.1007/BF00397130.
  • [35]. Witek, Z. (1995). Biological Production and its Utilization within a Marine Ecosystem in the Western Gdańsk Basin. Sea Fisheries Institute. Gdynia.
  • [36]. Coupled Ecosystem Model of the Baltic Sea. Institute of Oceanology PAS http://deep.iopan.gda.pl/CEMBaltic/new_ lay/forecast2.php
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac790cc5-54f7-41a6-800d-a6e215f3c67d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.