PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Prediction of Blended Yarn Evenness and Tensile Properties by Using Artificial Neural Network and Multiple Linear Regression

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present research work was carried out to develop the prediction models for blended ring spun yarn evenness and tensile parameters using artificial neural networks (ANNs) and multiple linear regression (MLR). Polyester/cotton blend ratio, twist multiplier, back roller hardness and break draft ratio were used as input parameters to predict yarn evenness in terms of CVm% and yarn tensile properties in terms of tenacity and elongation. Feed forward neural networks with Bayesian regularisation support were successfully trained and tested using the available experimental data. The coefficients of determination of ANN and regression models indicate that there is a strong correlation between the measured and predicted yarn characteristics with an acceptable mean absolute error values. The comparative analysis of two modelling techniques shows that the ANNs perform better than the MLR models. The relative importance of input variables was determined using rank analysis through input saliency test on optimised ANN models and standardised coefficients of regression models. These models are suitable for yarn manufacturers and can be used within the investigated knowledge domain.
Rocznik
Strony
43--50
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Department of Textile Engineering, Mehran University of Engineering & Technology, 76062 Jamshoro, Sindh, Pakistan
  • Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, 01062 Dresden, Germany
autor
  • Department of Fiber and Textile Technology, University of Agriculture Faisalabad, 3800 Faisalabad, Pakistan
autor
  • Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, 01062 Dresden, Germany
autor
  • Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, 01062 Dresden, Germany
Bibliografia
  • [1] Grosberg, P., Iype, C. (1999). Yarn Production: Theoretical Aspects (1st ed.). The Textile Institute Manchester England.
  • [2] Nawaz, S. M., Shahbaz, B., & Yousaf, C. K. (1999). Effect of different blends with various twist factors on the quality of P/C blended yarn. Pakistan Textile Journal, 48(6), 26–29.
  • [3] Basu, A. (2009). Yarn structure-properties relationship. Indian Journal of Fiber and Textile Research, 34(3), 287–299.
  • [4] Malik, S. A.; Tanwari, A., Syed, U., Qureshi, R. F.; & Mengal, N. (2012). Blended Yarn Analysis: Part I—Influence of Blend Ratio and Break Draft on Mass Variation, Hairiness, and Physical Properties of 15 Tex PES/CO Blended Ring-Spun Yarn. Journal of Natural Fibers, 9(3), 197-206.
  • [5] Malik, S. A.; Mengal, N., Saleemi, S., & Abbasi, S. A. (2013). Blended Yarn Analysis: Part II - Influence of Twist Multiplier and Back Roller Cot Hardness on Mass Variation, Hairiness, and Physical Properties of 15 Tex PES/CO-Blended Ring-Spun Yarn. Journal of Natural Fibers, 10(3), 271-281.
  • [6] Veit, D.; Hormes, I., Bergmann, J., & Wulfhorst, B. (1996). Image processing as a tool to improve machine performance and process control. International Journal of Clothing Science and Technology, 8(1/2), 66-72.
  • [7] Farooq, A.; & Cherif, C. (2008). Use of Artificial Neural Networks for Determining the Leveling Action Point at the Auto-leveling Draw Frame. Textile Research Journal, 78(6), 502-509.
  • [8] Farooq, A.; & Cherif, C. (2012). Development of Prediction System Using Artificial Neural Networks for the Optimization of Spinning Process. Fibers and Polymers, 13(2), 253-257.
  • [9] Cheng, L.; & Adams, D. L. (1995). Yarn strength prediction using neural networks part I: fiber properties and yarn strength relationship. Textile Research Journal, 65(9), 495–500.
  • [10] Üreyen, M. E.; & Gürkan, P. (2008). Comparison of Artificial Neural Network and Linear Regression Models for Prediction of Ring Spun Yarn Properties. I. Prediction of Yarn Tensile Properties, Fibers and Polymers, 9(1), 87-91.
  • [11] Üreyen, M. E.; & Gürkan, P. (2008). Comparison of Artificial Neural Network and Linear Regression Models for Prediction of Ring Spun Yarn Properties. II. Prediction of Yarn Hairiness and Unevenness. Fibers and Polymers, 9(1), 92-96.
  • [12] Demiryürek, O.; & Koç, E. (2009). Predicting the Unevenness of Polyester/Viscose Blended Open-end Rotor Spun Yarns Using Artificial Neural Network and Statistical Models. Fibers and Polymers, 10(2), 237-245.
  • [13] Demiryürek, O.; & Koç, E. (2009). The Mechanism and/or Prediction of the Breaking Elongation of Polyester/Viscose Blended Open-end Rotor Spun Yarns. Fibers and Polymers, 10(5), 694-702.
  • [14] Ramesh, M.C.; Rajamanickam, R; Jayaraman, S. (1995). The Prediction of Yarn Tensile Properties by Using Artificial Neural Network. Journal of Textile Institute, 86(3), 459-469.
  • [15] Beltran, R.; Wang, L.; & Wang, X. (2004). Predicting Worsted Spinning Performance with an Artificial Neural Network Model. Textile Research Journal, 74(9), 757-763.
  • [16] Pynckels, F.; Kiekens, P.; Sette, S.; Van Langenhov, L.; Impe, K. (1995). Use of Neural Nets for Determining the Spinnability of Fibres. Journal of Textile Institute, 86(3), 425-437.
  • [17] Wilamowski, B. M.; Iplikci, S.; Kaynak, O.; and Efe, M. Ö., (2001). An algorithm for fast convergence in training neural networks. Proceedings of International Joint Conference on Neural Networks, Washington, DC USA, 3, 1778-1782
  • [18] Fine, T. L. (1999). Feedforward Neural Network Methodology, Springer Verlag, New York USA.
  • [19] MacKay, D. J. C. (1992). Bayesian Interpolation. Neural Computation, 4(3), 415-447.
  • [20] Dan Foresee, F.; Hagan, M. T. (1997). Gauss-newton approximation to Bayesian learning. Proceedinds of the International Joint Conference on Neural Networks, 3, 1930-1935.
  • [21] Majumdar, P. K.; Majumdar, A. (2004). Predicting the Breaking Elongation of Ring Spun Cotton Yarns Using Mathematical, Statistical, and Artificial Neural Network Models. Textile Research Journal, 74(7), 652-655.
  • [22] Klein, W. (1987). A Practical Guide to Ring Spinning: Short-staple spinning series: manual of textile technology (1st ed.) The Textile Institute Manchester England.
  • [23] Bring, J. (1994). How to Standardize Regression Coefficients. The American Statistician, 48(3), 209-213.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac778809-37de-46bd-9af2-722f3f6245fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.