PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified neuro-fuzzy TSK network and its application in electronic nose

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper develops the modified structure of the Takagi-Sugeno-Kang neuro-fuzzy network with a theoretical basis for its adaptation. The simplified structure follows from the basic theoretical considerations concerning the way of creating the inference rules. The important point of this solution is the application of the fuzzy clustering algorithm to the input data. The efficiency of the proposed solution has been checked on the examples of regression and classification problems concerning the electronic nose.
Rocznik
Strony
675--680
Opis fizyczny
Bibliogr. 16 poz., wykr., rys., tab.
Twórcy
autor
  • Institute of Theory of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
  • Military University of Technology, 2 S. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Theory of Electrical Engineering, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warsaw, Poland
autor
  • Hanoi University of Technology, 1 Dai Co Viet Road, Hanoi, Vietnam
Bibliografia
  • [1] J.R. Jang, C.T. Sun, and E. Mizutani, Neuro-fuzzy and SoftComputing, Prentice Hall, New York, 1997.
  • [2] L. Rutkowski, Flexible Neuro-Fuzzy Systems, Kluwer Academic Publisher, Boston, 2004.
  • [3] L.X. Wang, Adaptive Fuzzy Systems and Control: Design andStability Analysis, Prentice Hall, New York, 1994.
  • [4] R. Babuska and H.B. Verbruggen, “Constructing fuzzy models by product space clustering”, in Fuzzy Model Identification, ed. H. Hellendoorn and D. Driankov, pp. 53-90, Springer, Berlin, 1998.
  • [5] J. Kacprzyk, Multistage Fuzzy Control, WNT, Warszawa, 2001 (in Polish).
  • [6] R. Yager and D. Filev, Essentials of Fuzzy Modeling and Control, Wiley, New York, 1994.
  • [7] H.J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, Boston, 1985.
  • [8] T. Takag and M. Sugeno, “Fuzzy identification of systems and its application to modeling and control”, IEEE Trans. SMC 15, 116-132 (1985).
  • [9] Y. Lin and G. Cunningham III, “A new approach to fuzzy neural system modeling”, IEEE Trans. Fuzzy Systems 3, 190-198 (1995).
  • [10] H. Ishibuchi, “Development of fuzzy neural networks”, in Fuzzy Modelling: Paradigms and Practice, ed. W. Pedrycz, pp. 185-202, Kluwer Academic Publishers, Boston, 1996.
  • [11] N.R. Pal and J.C. Bezdek, “On cluster validity for the fuzzy cmeans model”, IEEE Trans. Fuzzy Systems 3, 370-379 (1995).
  • [12] D. Gustafson and W. Kessel, “Fuzzy clustering with a fuzzy covariance matrix”, Proc. IEEE CDC 1, 761-766 (1976).
  • [13] A. Gath and B. Geva, “Unsupervised optimal fuzzy clustering”, IEEE Trans. PAMI 7, 773-781 (1989).
  • [14] L. Tran Haoi and S. Osowski, “Neuro-fuzzy TSK network for approximation of static and dynamic functions”, Control andCybernetics 31, 309-326 (2002).
  • [15] S. Osowski, L. Tran Hoai, and K. Brudzewski, “Neuro-fuzzy TSK network for calibration of semiconductor sensor array for gas measurements”, IEEE Trans. on Measurements and Instrumentation 53, 330-337 (2004).
  • [16] Matlab User Manual, Natick, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac72d9b3-2a64-4eaf-b0af-38e5e5a36961
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.