Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The east coast of North Kalimantan Province, Indonesia, from the northern border with Sabah, Malaysia, to the south, consists of a series of estuarine landscapes in the north and a delta in the south. Landsat imagery acquired in 1995 shows that there are 150,869 ha of pristine mangrove forest and 14,456 ha of ponds. The mangrove mapping uses the automatic mangrove map and index (AMMI). For ponds mapping, we have introduced the automatic shoreline map (ASM) index, automatic mapping of water body including the shoreline, ponds and rivers. Landsat image from 2000 shows that the mangrove area has decreased to 100,016 ha, while the pond area increased to 27,903 ha. Landsat image from 2010 shows that the mangrove area was 106,867 ha, while the pond area increased to 74,270.2 ha. Landsat imagery from 2022 shows that the remaining mangrove area was 108,187 ha, while the pond area increased further to 84,182 ha. Mangrove decline was extreme from 1995 to 2000, coinciding with Indonesia’s currency crisis. Currency devaluation encouraged local communities and entrepreneurs to create export commodities, with shrimp exports being one of the most promising. To maintain the presence of mangroves, the government implemented a silvo-fishery policy, while farming, it was also restoring mangroves. This paper introduces the fusion of two indices that automatically map mangrove environments to inform multi-temporal changes of mangroves, ponds, and shorelines based on Landsat imagery more accurately, faster, and with lower cost and labour.
Wydawca
Czasopismo
Rocznik
Tom
Strony
67--77
Opis fizyczny
Bibliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- National Research and Innovation Agency, Research Center for Oceanography, Jl. Pasir Putih 1, Ancol Timur, 14430, Jakarta, Indonesia
autor
- National Research and Innovation Agency, Research Center for Oceanography, Jl. Pasir Putih 1, Ancol Timur, 14430, Jakarta, Indonesia
Bibliografia
- Adame, M.F. et al. (2018) “The undervalued contribution of mangrowe protection in Mexico to carbon emission targets,” Conservation Letters, 11(4), e12445. Available at: https://doi.org/10.1111/conl.12445.
- Alban de, J.D.T. et al. (2020) “Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar,” Environmental Research Letters, 15(3), 034034. Available at: https://doi.org/10.1088/1748-9326/ab666d.
- Alongi, D.M. (2002) “Present state and future of the world’s mangrove forests,” Environmental Conservation, 29(3), pp. 331–349. Available at: https://doi.org/10.1017/S0376892902000231.
- Asmalyah, S. (2022) BRGM bakal terapkan “silvofishery” mangrove di Kalimantan Utara [The Peat and Mangrove Restoration Agency (BRGM) implement mangrove silvofishery in North Kalimantan]. Antara. Available at: https://www.antaranews.com/berita/3255405/brgm-bakal-terapkan-silvofishery-mangrove-di-kali-mantan-utara (Accessed: May 21, 2023).
- BIG (2017) Peta Rupabumi Indonesia skala 1:250.000 [Indonesian Topographic Map, scale: 1:250.000]. Cibinong: Badan Informasi Geospasial.
- Boon, J.M. (2001) “A socio-economic analysis of mangrove degradation in Samoa,” Geographical Review of Japan, Series B, 74(2), pp. 159–186. Available at: https://doi.org/10.4157/grj1984b.74.159.
- Brooks, N. (2003) Vulnerability, risk, and adaptation: A conceptual framework, Norwich: Tyndall Centre for Climate Change Research, University of East Anglia.
- Chen, L. et al. (2009) “Recent progresses in mangrove conservation, restoration and research in China,” Journal of Plant Ecology, 2(2), pp. 45–54. Available at: https://doi.org/10.1093/jpe/rtp009.
- Costanza, R. et al. (1997) “The value of the world’s ecosystem services and natural capital,” Nature, 387, pp. 253–260. Available at: https://doi.org/10.1038/387253a0.
- Dahdouh-Guebas, F. et al. (2006) “How effective were mangroves as a defence against the recent tsunami?,” Current Biology, 15(12), pp. 443–446. Available at: https://doi.org/10.1016/j.cub.2005.06.008.
- Danielsen, F. et al. (2005) “The Asian tsunami: A protective role for coastal vegetation,” Science, 310(5748), 643. Available at: https://doi.org/10.1126/science.1118387.
- Das, S. and Vincent, J.R. (2009) “Mangroves protected villages and reduced the death toll during the Indian super cyclone,” Proceedings of the National Academy of Sciences USA, 106(18), pp. 7357–7360. Available at: https://doi.org/10.1073/pnas.0810440106.
- Ding, F. (2009) “Study on information extraction of water body with a new water index (NWI),” Surveying and Mapping Science, 34(4), pp. 155–157 [in Chinese].
- Donato, D.C. et al. (2011) “Mangroves are among the most carbon-rich forests in the tropics,” Nature Geoscience, 4(5) pp. 293–297. Available at: https://doi.org/10.1038/ngeo1123.
- Duke, N.C. et al. (2007) “A world without mangroves?,” Science, 317 (5834), pp. 41–42. Available at: https://doi.org/10.1126/science.317.5834.41b.
- Fatoyinbo, T.E. et al. (2008) “Landscape-scale extent, height, biomass, and carbon estimation of Mozambique’s mangrove, forests with Landsat ETM+, and Shuttle Radar Topography Mission elevation data,” Journal of Geophysical Research, 113(2). Available at: https://doi.org/10.1029/2007JG000551.
- Fisher, A., Flood, N. and Danaher, T. (2016) “Comparing Landsat water index methods for automated water classification in ekstern Australia,” Remote Sensing of Environment, 175, pp. 167–182. Available at: https://doi.org/10.1016/j.rse.2015.12.055.
- Gandhi, S. and Jones, T.G. (2019) “Identifying mangrove deforestation hotspots in South Asia, Southeast Asia and Asia-Pacific,” Remote Sensing, 11(6), 728. Available at: https://doi.org/10.3390/rs11060728.
- Gilman, E.L. et al. (2008) “Threats to mangroves from climate change and adaptation options: a review,” Aquatic Botany, 89, pp. 237–250. Available at: https://doi.org/10.1016/j.aquabot.2007.12.009.
- Giri, C. et al. (2011) “Status and distribution of mangrove forests of the world using earth observation satellite data,” Global Ecology and Biogeography, 20(1), pp. 154–159. Available at: https://doi.org/10.1111/j.1466-8238.2010.00584.x.
- Gorelick, N. et al. (2017) “Google Earth engine: Planetary-scale geospatial analysis for everyone,” Remote Sensing of Environment, 202, pp. 18–27. Available at: https://doi.org/10.1016/j.rse.2017.06.031.
- Guo, X., et al. (2018) “Vegetation horizontal occlusion index (VHOI) from TLS and UAV image to better measure mangrove LAI,” Remote Sensing, 10(11), 1739. Available at: https://doi.org/10.3390/rs10111739.
- Hauser, L.T. et al. (2017) “Uncovering the spatio-temporal dynamics of land cover change and fragmentation of mangroves in the Ca Mau peninsula, Vietnam using multi-temporal SPOT satellite imagery (2004–2013),” Applied Geography, 86, pp. 197–207. Available at: https://doi.org/10.1016/j.apgeog.2017.06.019.
- Huang, C. et al. (2018) “Detecting, extracting, and monitoring surface water from space using optical sensors: A review,” Reviews of Geophysics, 56, pp. 333–360. Available at: https://doi.org/10.1029/2018RG000598.
- Jones, A.R. et al. (2020) “Estimating mangrove tree biomass and carbon content: A comparison of forest inventory techniques and drone imagery,” Frontiers in Marine Science, 6, 784. Available at: https://doi.org/10.3389/fmars.2019.00784.
- Kanniah, K.D. et al. (2015) “Satellite images for monitoring mangrowe cover changes in a fast growing economic region in Southern Peninsular Malaysia,” Remote Sensing, 7(11), pp. 14360–14385. Available at: https://doi.org/10.3390/rs71114360.
- Kim, K. et al. (2016) “Novel water filtration of saline water in the outermost layer of mangrove roots,” Scientific Reports, 6, 20426. Available at: https://doi.org/10.1038/srep20426.
- Kuenzer, C. et al. (2011) “Remote sensing of mangrove ecosystems: A review,” Remote Sensing, 3(5), pp. 878–928. Available at: https://doi.org/10.3390/rs3050878.
- Li, J. et al. (2022) “Satellite detection of surface water extent: A review of methodology,” Water, 14(7), 1148. Available at: https://doi.org/10.3390/w14071148.
- Long, C. et al. (2022) “Dynamic changes in mangroves of the largest delta in northern Beibu Gulf, China: Reasons and causes,” Forest Ecology and Management, 504, 119855. Available at: https://doi.org/10.1016/j.foreco.2021.119855.
- Macintosh, D.J., Ashtona, E.C. and Havanon, S. (2002) “Mangrove rehabilitation and intertidal biodiversity: A study in the Ranong Mangrove Ecosystem, Thailand,” Estuarine, Coastal and Shelf Science, 55, pp. 331–345. Available at: https://doi.org/10.1006/ECSS.2001.0896.
- McFeeters, S.K. (1996) “The use of the normalized difference water index (NDWI) in the delineation of open water features,” International Journal of Remote Sensing, 17, pp. 1425–1432. Available at: https://doi.org/10.1080/01431169608948714.
- Nagelkerken, I. et al. (2008) “The habitat function of mangroves for terrestrial and marine fauna: A review,” Aquatic Botany, 89(2), pp. 155–185. Available at: https://doi.org/10.1016/j.aquabot.2007.12.007.
- Ng, C.K-C. and Ong, R.C. (2022) “A review of anthropogenic interaction and impact characteristics of the Sundaic mangroves in Southeast Asia,” Estuarine. Coastal and Shelf Science, 267, 107759. Available at: https://doi.org/10.1016/j.ecss.2022.107759.
- Purnamasayangsukasih, P.R. et al. (2016) “A review of uses of satellite imagery in monitoring mangrove forests,” IOP Conference Series: Earth and Environmental Science, 37, 012034. Available at: https://doi.org/10.1088/1755-1315/37/1/012034.
- Richards, D.R. and Friess, D.A. (2015) “Rates and drivers of mangrowe deforestation in Southeast Asia, 2000–2012,” Proceedings of the National Academy of Sciences, 113(2), pp. 344–349. Available at: https://doi.org/10.1073/pnas.1510272113.
- Ross, M.S. et al. (2006) “Early post-hurricane stand development in Fringe mangrove forests of contrasting productivity,” Plant Ecology, 185(2), pp. 283–297. Available at: https://doi.org/10.1007/s11258-006-9104-9.
- Sanderman, J. et al. (2018) “A global map of mangrove forest soil carbon at 30 m spatial resolution,” Environmental Research Letters, 13(5), 055002. Available at: https://doi.org/10.1088/1748-9326/aabe1c.
- Shen, L. and Li, C. (2010) “Water body extraction from Landsat ETM+imagery using adaboost algorithm,” 18th International Conference on Geoinformatics, pp. 1–4. Available at: https://doi.org/10.1109/GEOINFORMATICS.2010.5567762.
- Sierra-Correa, P.C. and Kintz, J.R.C. (2015) “Ecosystem-based adaptation for improving coastal planning for sea-level rise: A systematic review for mangrove coasts,” Marine Policy, 51, pp. 385–393. Available at: https://doi.org/10.1016/j.marpol.2014.09.013.
- Soemodihardjo, S., Suroyo and Suyarso (1991) “The mangrove forest of Segara Anakan: An assessment of their condition and prospect,” in L.M. Chou et al. (eds.) Towards an integrated management of tropical coastal resources, Proceedings of the ASEAN/US technical workshop on integrated tropical coastal zone management, pp. 213–222, Singapore, 28–31 Oct 1988. Singapore: National University of Singapore.
- Suyarso (2022) “AMMI Automatic Mangrove Map and Index: An analytical study on satellite imageries at Aru Islands, Maluku, Indonesia,” Emerging Challenges in Environment and Earth Science, 2, pp. 106–130. Available at: https://doi.org/10.9734/bpi/ecees/v2/3423e.
- Suyarso and Avianto, P. (2022) “AMMI Automatic Mangrove Map and Index: Novelty for efficiently monitoring mangrove changes with the case study in Musi Delta, South Sumatra, Indonesia,” International Journal of Forestry Research, 2022, 8103242. Available at: https://doi.org/10.1155/2022/8103242.
- Taylor, M.D.M.R.B., Rangel-Salazar, J.L. and Hernández, B.C. (2013) “Resilience in a Mexican Pacific mangrove after hurricanes: Implications for conservation-restoration,” Journal of Environmental Protection, 4, pp. 1383–1391. Available at: https://doi.org/10.4236/jep.2013.412159.
- Thakur, S. et al. (2020) “A review of the application of multispectral remote sensing in the study of mangrove ecosystems with special emphasis on image processing techniques,” Spatial Information Research, 28(1), pp. 39–51. Available at: https://doi.org/10.1007/s41324-019-00268-y.
- Thu, P.M. and Populus, J. (2007) “Status and changes of mangrowe forest in Mekong Delta: Case study in Tra Vinh, Vietnam,” Estuarine Coastal and Shelf Science, 71(1–2), pp. 98–109. Available at: https://doi.org/10.1016/j.ecss.2006.08.007.
- USGS (no date) What are the band designations for the Landsat satellites? USGS science for changing world. Available at: https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites (Accessed: May 21, 2023).
- Valiela, I., Bowen, J.L. and York, J.K. (2001) “Mangrove forests: One of the world’s threatened major tropical environments,” Bioscience, 51(10), pp. 807–815. Available at: https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2.
- Veettil, B.K. et al. (2018) “Mangroves of Vietnam: Historical development, current state of research and future threats,” Estuarine Coastal and Shelf Science, 218, pp. 212–236. Available at: https://doi.org/10.1016/j.ecss.2018.12.021.
- Wang, L. et al. (2019) “A review of remote sensing for mangrowe forests: 1956–2018,” Remote Sensing of Environment, 231, 111223. Available at: https://doi.org/10.1016/j.rse.2019.111223.
- Wang, M. et al. (2010) “Maintenance of estuarine water quality by mangroves occurs during flood periods: A case study of a subtropical mangrove wetland,” Marine Pollution Bulletin, 60(11), pp. 2154–2160. Available at: https://doi.org/10.1016/j.marpolbul.2010.07.025.
- Wang, X. et al. (2018) “A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery,” International Journal of Applied Earth Observation and Geoinformation, 68, pp. 73–91. Available at: https://doi.org/10.1016/j.jag.2018.01.018.
- Wicaksono, P. et al. (2016) “Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing,” International Journal of Remote Sensing, 37(1), pp. 26–52. Available at: https://doi.org/10.1080/01431161.2015.1117679.
- Wong, Y.S., Tam, N.F.Y. and Lan, C.Y. (1997) “Mangrove wetlands as a wastewater treatment facility: A field trial,” Hydrobiologia, 352 (1/3), pp. 49–59. Available at: https://doi.org/10.1023/a:1003040920173.
- Worthington, T.A. et al. (2020) “A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation,” Scientific Reports, 10(1). Available at: https://doi.org/10.1038/s41598-020-71194-5.
- Xu, H. (2006) “Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery,” International Journal of Remote Sensing, 27(14), pp. 3025–3033. Available at: https://doi.org/10.1080/01431160600589179.
- Yam, R.S.W. et al. (2020) “Assessing impacts of metallic contamination along the tidal gradient of a riverine mangrove: Multi-metal Bioaccumulation and biomagnification of filter-feeding bivalves,” Forests, 11(5), 504. Available at: https://doi.org/10.3390/f11050504.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac70db49-4dd5-424a-9d78-81d67eb1520f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.