Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of tests on the frost resistance, water absorption, and compressive strength of concretes made with three types of cement: CEM I, CEM II/B-M (S-V), and CEM III/A, evaluated after different curing periods (28, 56, and 90 days). Additionally, to assess the effects of the minimum 4% air entrainment recommended by the EN 206 standard, concrete mixes with the same composition but containing an air-entraining admixture in a constant amount of 0.15% by cement mass, were prepared. For a more comprehensive characterization of the concretes, tests were also conducted on the concrete mixes and the physical properties of the concretes, such as density, water absorption, and total porosity, were determined. The paper also presents significant results on the pore distribution in the air-entrained concretes, confirming the achievement of very good basic air-entrainment parameters in all concretes. Based on the test results, it was found that both the type of cement and the introduction of an air-entraining admixture significantly influence not only the frost resistance of the concretes but also their compressive strength depending on the curing time of the samples. This is particularly evident in the low-clinker cements CEM II and CEM III. It was observed that in the case of concretes with these cements, it is possible to achieve an almost zero decrease in compressive strength after 150 cycles of freezing and thawing after 90 days of curing.
Wydawca
Rocznik
Tom
Strony
406--421
Opis fizyczny
Bibliogr. 64 poz., fig., tab.
Twórcy
autor
- Department of General Construction, Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
- Laboratory of Civil Engineering, Faculty of Civil Engineering and Architecture, Doctoral School at the Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
Bibliografia
- 1. Czarnecki L., Justnes H. 2012. Zrównoważony, trwały beton. Cement Wapno Beton, 6, 341–362.
- 2. Polish Committee for Standardization PN-EN 1992-1-1:2008. Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings; Warsaw 2008.
- 3. Monadiri A., Ouali A., Hauza P., Bucher R., Mrabet S. 2022,. Evaluation of the durability of concretes associated with flash metakaolin or silica fume. Materials Today: Proceedings 58(4), 1549–1556. https://doi.org/10.1016/j.matpr.2022.03.325.
- 4. Powers T.C. 1945. A working hypothesis for further studies of frost resistance of concrete. J. Proc. 41(1), 245–272.
- 5. Powers T.C., Helmuth R.A. 1953. Theory of volume changes in hardened Portland cement paste during freezing. Proc.. Highway Res. Board. 32, 285–297.
- 6. Litvan G.G. Phase transitions of adsorbates: part IV. Mechanism of frost action in hardened cement paste. J. Am. Ceram. Soc. 1972, 55(1), 38–42. https://doi.org/10.1111/j.1151-2916.1972.tb13393.x.
- 7. Fagerlund G. The critical degree of saturation method of assessing the freeze/thaw resistance of concrete. Materials and Structures 1977, 10(58), 217–229.
- 8. Fagerlund G. The International Cooperative Test of the critical degree of saturation Method of Assessing the Freeze/Thaw Resistance of Concrete. Mater. Constr. 1977, 10(58), 230–251.
- 9. Setzer M. J. The micro ice lens pump – a new sight of frost attack and frost testing. Proceedings Third International Conference on Concrete Under Severe Conditions. Edited by N. Banthia. k. Sakai and O. E. Gjørv. The University of British Columbia.Canada. Vancouver 2001.
- 10. Neville A.M. Właściwości betonu. Wydanie czwarte. Polski Cement. Kraków 2000.
- 11. Pigeon. M. Pleau. M.R. Durability of concrete in cold climates. E&FN SPON. 1995
- 12. Rusin Z. Technologia betonów mrozoodpornych. Polski Cement. Kraków. 2002.
- 13. Glinicki A., Radomski W. Diagnostyka mrozoodporności betonu w drogowych obiektach mostowych. Drogownictwo 2013, 9(c), 268–276.
- 14. Zheng X., Liu F., Luo T., Duan Y., Yi Y., Hua C, 2021,. Study on durability and pore characteristics of concrete under salt freezing environment. Materials 14(23), 7228. https://doi.org/10.3390/ma14237228.
- 15. Sahin Y., Akkaya Y., Boylu F., Tasdemir M. 2017. Characterization of air entraining admixtures in concrete using surface tension measurements. Cem. Concr. Compos. 82, 95–104. https://doi.org/10.1016/j.cemconcomp.2017.03.023.
- 16. Li Z.H., Xu I,. Su Ch., Zheng D., Yang J.L. 2014. Effect of water-binder ratio and mineral admixture on frost scaling resistance of concrete. Advanced Materials Research, 881–883: 1212–1215. https://doi.org/10.4028/www.scientific.net/AMR.881-883.1212.
- 17. Müller M., Ludwig H.M. Salt frost scaling of concrete – new insights regarding the damage mechanism. MATEC Web of Conferences 2022, 364, 02019, September, 2022. CCRRR 2022. https://doi.org/10.1051/matecconf/202236402019.
- 18. Guo Y., Wu S., Lyu Z., Shen A., Yin L., Xue C. Pore structure characteristics and performance of construction waste composite powder-modified concrete. Construction and Building Materials 2021, 269, 121262. https://doi.org/10.1016/j.conbuildmat.2020.121262.
- 19. Hammad Ahmed S., Yuan Q., Zuo S. Air entrainment in fresh concrete and its effects on hardened concrete-a review. Construction and Building Materials 2021, 274. https://doi.org/10.1016/j.conbuildmat.2020.121835.
- 20. Fagerlund G. Frost Resistance of High Performance Concrete-Some Theoretical Considerations. RILEM 3C- Workshop Durability of HPC 1994.
- 21. European Committee for Standardization. EN 206:2013+A2:2021. Concrete - Specification, performance, production and conformity; CEN: Brussels, 2021.
- 22. Polish Committee for Standardization PN-B-06265:2022-08. National supplement PN-EN 206+A1:2016- 12. Concrete - specification, performance, production and conformity.
- 23. European Committee for Standardization. EN 12350-7:2019-08. Testing fresh concrete - Part 7: Air content - pressure methods. CEN: Brussels, 2019.
- 24. Łukowski P. Modyfikacja materiałowa betonu. Stowarzyszenie Producentów Cementu. Kraków 2016.
- 25. Bager D.H., Jacobsen S. A model for the destructive mechanism in concrete caused by freeze/thaw action. In: Proc. of the International RILEM. Workshop on Frost Damage in Concrete.Ed. J.Janssen. M.J. Setzer. M.B. Snyder. RILEM Publications. 2002, 17–40.
- 26. Polish Committee for Standardization. PN-B/06250:1988. Ordinary concrete (In Polish); PKN: Warsaw, Poland 1988.
- 27. Wawrzeńczyk J., Molendowka A., Kłak. A. 2013,. Results of concrete absorption test related to some particular factors. Czasopismo: Budownictwo i Architektura, 12(3), 239–246.
- 28. Gaynor R.D., Mullarky J.I. Effect of mixing speed of air content. NRMCA Technical Information Letter 312. National Ready Mixed Concrete Assoc. Silver Spring. Maryland. Sept. 20. 1974.
- 29. Brandt A.M., Kasperkiewicz J. Metody diagnozowania betonów i betonów wysokowartościowych na podstawie badań strukturalnych. IPPT PAN. NATO Scientific Affair Division. Warszawa 2003.
- 30. Zieliński M. Właściwości i struktura betonów z dodatkiem popiołów lotnych ze spalania węgla w kotłach fluidalnych. Rozprawa Doktorska. IPPT PAN. Warszawa. 2005.
- 31. Gebler S., Klieger P. Effect of Fly Ash on the AirVoid Stability of Concrete. Fly Ash. Silica Fume. Slag and other Mineral By-Products in Concrete 1983, Publication ACI SP-79- 5. 103–142. https://doi.org/10.14359/6688.
- 32. Fraay A.L.A., Bijen J.M., De Haan Y.M. The reactionof fly ash in concrete: a cristal examination. Cement and Concrete Research. 1989, 19(2), 235–246. https://doi.org/10.1016/0008-8846(89)90088-4.
- 33. Glinicki M.A. Trwałość betonu w nawierzchniach drogowych. Instytut Badawczy Dróg i Mostów. Warszawa 2011.
- 34. Giergiczny Z., Glinicki M.A., Sokołowski M., Zieliński M. Charakterystyka porów powietrznych a mrozoodporność betonów na cementach żużlowych. KILiW PAN. Wydawnictwo Politechniki Białostockiej 2008.
- 35. Jasiczak J., Mikołajczyk P. Technologia betonu modyfikowanego domieszkami i dodatkami. Przegląd tendencji krajowych i zagranicznych. Politechnika Poznańska. Poznań 1997.
- 36. Persson B 2003. Internal frost resistance and salt frost scaling of self-compacting concrete. Cement and Concrete Research 33, 373–379. https://doi.org/10.1016/S0008-8846(02)00968-7.
- 37. Zielińska E. Wpływ dodatku kredy na przebieg procesów hydratacji niektórych minerałów i cementu portlandzkiego. Prace Instytutu Technologii i Organizacji Produkcji Budowlanej Politechniki Warszawskiej. 3. 1972.
- 38. Lazniewska-Piekarczyk B., Gołaszewski J. Relationship Between Air-Content in Fresh Cement Paste. Mortar. Mix and Hardened Concrete Acc. to PN-EN 480-1 with Air-Entraining CEM II/BV. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2019. p. 032044.
- 39. Chindaprasirt P., Kroehong W., Damrongwiriyanupap N., Suriyo W., Jaturapitakkul C. 2020. Mechanical properties. chloride resistance and microstructure of Portland fly ash cement concrete containing high volume bagasse ash. Journal of Building Engineering, 31, 101415. https://doi.org/10.1016/j.jobe.2020.101415 .
- 40. Liu Z., Hansen W. Pore damage in cementitious binders caused by deicer salt frost exposure. Construction and Building Materials 2015, 98, 204-216. https://doi.org/10.1016/j.conbuildmat.2015.06.066.
- 41. European Committee for Standardization EN 12620:2002+A1:2008. Aggregates for concrete; CEN: Brussels, 2008.
- 42. European Committee for Standardization. EN 12350-2:2019-07. Testing fresh concrete - Part 2: Slump test; CEN: Brussels, 2019.
- 43. European Committee for Standardization. EN 12350-3:2019-07. Testing fresh concrete - Part 3: Vebe test; CEN: Brussels, 2019.
- 44. European Committee for Standardization. EN 196-6:2018. Methods of testing cement - Part 6: Determination of fineness; CEN: Brussels, 2018.
- 45. European Committee for Standardization. EN 12390‒7:2019. Testing hardened concrete - Part 7: Density of hardened concrete; CEN: Brussels, 2019.
- 46. British Committee for Standardization. BS EN 1936:2006. Natural stone test methods – Determination of real density and apparent density and of total and open porosity. BS: London, 2006.
- 47. European Committee for Standardization. EN 12390‒3:2019. Testing hardened concrete - Part 3: Compressive strength of test specimens; CEN: Brussels 2019.
- 48. British Standards. BS-EN 12390-4:2020-03. Testing hardened concrete - Part 4: Compressive strength - Specification for testing machines. London, United Kingdom, 2020.
- 49. European Committee for Standardization. EN 480-11:2005. Admixtures for concrete, mortar and grout - Test methods - Part 11: Determination of air void characteristics in hardened concrete; CEN: Brussels 2005.
- 50. Shetty M.S. Concrete Technology: Theory and Practice 2008. S. Chand & Company Ltd.
- 51. Gopalan M.K. Sorptivity of fly ash concretes. Cement and Concrete Research 2003, 26(8), 1189-1197. https://doi.org/10.1016/0008-8846(96)00105-6.
- 52. Shreyas K. Characteristics of GGBS as an alternate material in conventional concrete. International Journal of Creative Research Thoughts (IJCRT) 2017, 5(4).
- 53. Rudnicki T. The Influence of the type of cement on the properties of surface cement concrete. Materials 2022, 15. https://doi.org/10.3390/ma15144998.
- 54. Zeng Q., Liu X., Zhang Z., Wei Ch., Xu Ch. Synergistic utilization of blast furnace slag with other industrial solid wastes in cement and concrete industry: Synergistic mechanisms, applications, and challenges, Green Energy and Resources, 2023, 1(2), 100012. https://doi.org/10.1016/j.gerr.2023.100012.
- 55. Giergiczny Z., Glinicki A., Sokołowski M., Zielinski M. 2009. Air void system and frost-salt scaling of concrete containing slag-blended cement. Construction and Building Materials, 23(6), 2451–2456. https://doi.org/10.1016/j.conbuildmat.2008.10.001.
- 56. Deja J. Freezing and de-icing salt resistance of blast furnace slag concretes. Cem Concr Compos 2003, 25, 357–361. https://doi.org/10.1016/S0958-9465(02)00052-5.
- 57. Vikan H., Justnes H. Influence of silica fume on the rheology of cementitious paste. American Concrete Institute, ACI Special Publication 2004, SP-221, 427-4421. 8th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. Las Vegas, 23–29 May 2004.
- 58. Sikora H., Piasta W. Nasiąkliwość, wodoprzepuszczalność, wytrzymałość i odkształcenia długotrwałe betonów napowietrzonych. Dni Betonu 2012.
- 59. Burg, R.G., Chiorino, M.A., Dilger, W.H., Gardner, N.J., Hansen, W., Marzouk, H., Mcdonald, D.B., Mueller, H.S., Nassif, H.H., Novak, L.C., Rieder, K.A., Robertson, I., Sakata, K., Shiu, K.N., Weiss, J. ACI 209. 2 R-08 Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete Reported by ACI Committee 209.
- 60. D-05.03.04. Nawierzchnia z betonu cementowego. Warunki Wykonania i Odbioru Robót Budowlanych, GDDKiA, 30 września 2019.
- 61. Szklarzyńska M., Gaudy J., Wojtysiak Z. Air void characteristic in hardened, air entrained construction concrete in terms of specimens compacting method. Dni Betonu 2021.
- 62. Brandt A.M. Diagnostyka betonu na podstawie badania struktury. Przegląd Budowlany 2011, 10.
- 63. Adu-Amankwah S., Black L., Zajac M., Skocek J., Ben Haha M. Freeze-thaw resistance of concrete: Insight from microstructural properties, Sixth International Conference on Durability of Concrete Structures, Paper Number PSE11, 18–20 July 2018, University of Leeds, Leeds, United Kingdom.
- 64. Skripkiūnas G., Nagrockiene D., Girskas G., Vaičiene M., Baranauskaite E. The cement type effect on freeze-thaw and deicing salt resistance of concrete. 11th International Conference on Modern Building Materials, Structures and Techniques, MBMST 2013, Procedia Engineering 2013, 57, 1045–1051. https://doi.org/10.1016/j.proeng.2013.04.132.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac686d0a-eab3-4bb5-941b-6dfe3fb3dc8a