Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Abstract An electrode is one of the components in the electric discharge machine (EDM), that requires excellent electrical conductivity and strength. This component is typically made of Cu-based alloys which can be synthesized by powder metallurgy (PM). Their strength can be enhanced by the addition of alloy elements and the improvement of specific parameters. In this study, the characteristics of Cu-Ni-xFe alloys including the microstructure evolution, compressive strength, hardness, and electrical properties were investigated with different Fe contents and the compaction temperature. The results show that the addition of Fe tended to increase the hardness and compressive yield strength of the model alloys linearly. The maximum compressive yield strength of 227.16 MPa was obtained for Cu-Ni-3.0 wt.%Fe alloy with 150oC compaction temperature. The electrical conductivity of all model alloys exceeded 75% IACS, in which alloys with compaction temperatures ranging from 150 to 250oC showed a higher conductivity. The microstructure of Cu-Ni-xFe alloys was observed to have Cu-Ni solid solution and intermetallic phases, which increased the hardness of the alloys. In conclusion, the addition of Fe element and compaction temperature affect the microstructure, mechanical, and electrical properties of Cu-Ni-xFe alloys.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
12--26
Opis fizyczny
Bibliogr. 42 poz., fig., tab.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Jl. Almamater Kampus USU, Padang Bulan, Medan, 20155, Indonesia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Jl. Almamater Kampus USU, Padang Bulan, Medan, 20155, Indonesia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Jl. Almamater Kampus USU, Padang Bulan, Medan, 20155, Indonesia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Jl. Almamater Kampus USU, Padang Bulan, Medan, 20155, Indonesia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Muhammadiyah Sumatera Utara, Jl. Kapt. Mukhtar Basri No. 3, Medan, 20238, Indonesia
autor
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Jl. Almamater Kampus USU, Padang Bulan, Medan, 20155, Indonesia
Bibliografia
- 1. Hussein, S.G., Alsaffar, I., Al-shammari, M.A., Al-waily, M. Effects of Ni additive on fatigue and mechanical properties of Al-Cu alloy manufactured using powder metallurgy. J. Eng. Sci. Technol. 2022; 17(5): 3310–25. https://jestec.taylors.edu.my/Vol 17 Issue 5 October 2022/17_5_21.pdf.
- 2. Song, B., Yu, T., Jiang, X., Xi, W., Lin, X. Effect of W content on the microstructure and properties of Cu-Fe alloy. J. Mater. Res. Technol. 2020; 9(3): 6464–74. https://doi.org/10.1016/j.jmrt.2020.04.031.
- 3. El-Khatib, S., Elsayed, A.H., Shash, A.Y., El-Habak, A. Effect of dispersions of Al2O3 on the physical and mechanical properties of pure copper and copper-nickel alloy. Future Engineering Journal. 2022; 3(1): 1–10. https://digitalcommons.aaru.edu.jo/fej/vol3/iss1/2.
- 4. Wang, M., Yang, Q., Jiang, Y., Li, Z., Xiao, Z., Gong, S., et al. Effects of Fe content on microstructure and properties of Cu-Fe alloy. Trans. Nonferrous Met. Soc. China. 2021; 31(10): 3039–49. https://doi.org/10.1016/S1003-6326(21)65713-8.
- 5. Marenych, O., Kostryzhev, A. Strengthening mechanisms in nickel-copper alloys: A review. Metals. 2020; 10(1358): 1–18. https://doi.org/10.3390/met10101358.
- 6. Christofidou, K.A., Robinson, K.J., Mignanelli, P.M., Pickering, E.J., Jones, N.G., Stone, H.J. The effect of heat treatment on precipitation in the Cu-Ni-Al alloy Hiduron® 130. Mater. Sci. Eng. A. 2017; 692 (November 2016): 192–8. http://dx.doi.org/10.1016/j.msea.2017.03.069.
- 7. Weiyang, W., Zhu, X., Qian, L.E.I., Xiukuang, Z., Zhou, L.I. Research progress of oxide dispersion strengthening copper alloys. Mater. Sci. Eng. Powder Metall. 2021; 26(6): 492–9. http://doi:10.19976/j.cnki.43-1448/TF.2021067.
- 8. Li, X., Zhang, M., Zhang, G., Wei, S., Wang, Q., Lou, W., et al. Influence evaluation of tungsten content on microstructure and properties of Cu-W composite. Metals. 2022; 12(10): 1–16. https://doi.org/10.3390/met12101668.
- 9. Erçetin, A., Aslantaş, K. Production of WCu electrical contact material via conventional powder metallurgy method: Characterization, mechanical and electrical properties. Tr Doğa ve Fen Derg − Tr J Nature Sci. 2017; 6(1). https://dergipark.org.tr/en/download/article-file/347502.
- 10. Jiang, Y.B., Zhang, T.T., Lei, Y., He, S., Jiang, L.X., Xie, J.X. Effects of Ni content on microstructure and properties of aged Cu−0.4Be alloy. Trans. Nonferrous Met. Soc. China. 2021; 31(3): 679–91. http://dx.doi.org/10.1016/S1003-6326(21)65529-2.
- 11. Huang, J., Xiao, X., Xiong, S., Wan, J., Guo, C. Effect of Ni and Mn contents on the microstructure and properties of Cu-Ni-Mn-P alloy. J. Alloys Compd. 2022; 901(163636). https://doi.org/10.1016/j.jallcom.2022.163636.
- 12. Baroura, L., Boukhobza, A., Derardja, A., Fedaoui, K. Study of microstructure and mechanical properties of sintered Fe-Cu alloys. Int. J. Eng. Res. Afr. 2018; 34(November 2019): 5–12. https://doi.org/10.4028/www.scientific.net/JERA.34.5.
- 13. Ratov, B., Mechnik, V., Rucki, M., Gevorkyan, E., Kilikevicius, A., Kolodnitskyi, V., et al. Combined effect of CrB2 micropowder and VN nanopowder on the strength and wear resistance of Fe–Cu–Ni–Sn matrix diamond composites. Adv. Sci. Technol. Res. J. 2023; 17(1): 23–34. https://doi.org/10.12913/22998624/157394.
- 14. Rojas, P., Vera, R., Martínez, C., Villarroel, M. Effect of the powder metallurgy manufacture process on the electrochemical behaviour of copper, nickel, and copper-nickel alloys in hydrochloric acid. Int. J. Electrochem. Sci. 2016; 11(6): 4701–11. https://doi.org/10.20964/2016.06.40.
- 15. Mousapour, M., Azadbeh, M., Danninger, H. Effect of compacting pressure on shape retention during supersolidus liquid phase sintering of Cu base alloys. Powder Metall. 2017; 60(5): 393–403. https://doi.org/10.1080/00325899.2017.1357781.
- 16. Zhang, Y., Guo, X., Chen, Y., Li, Q. Effect of compaction pressure on the densification, microstructure, and mechanical properties of Ti-1Al-8V-5Fe alloy based on TiH2 and HDH-Ti powders. Micro Nano Lett. 2019; 14(8): 906–10. https://doi:10.1049/mnl.2018.5736.
- 17. Meyer, Y.A., Bonatti, R.S., Costa, D., Bortolozo, A.D., Osório, W.R. Compaction pressure and Si content effects on compressive strengths of Al/Si/Cu alloy composites. Mater. Sci. Eng. A. 2020; 770: 1–7. https://doi.org/10.1016/j.msea.2019.138547.
- 18. Sabri, A.M., Rahim, M.Z., Ahmad, M.A.H., Azis, N.H., Ibrahim, M.R., Mubarak, A., et al. The effect of powder metallurgy parameters on electrical conductivity of copper-nickel-tungsten electrode. Int. J. Eng. Technol. 2019; 8: 111–16. https://doi.org/10.14419/ijet.v8i1.1.24788.
- 19. Huang, J.S., Min, S. Preparation of Fe-Cu-Ni-Mo-C alloy with high performance by powder metallurgy warm compaction. Adv. Mater. Res. 2011; 194–196: 100–3. https://doi:10.4028/www.scientific.net/AMR.194-196.100.
- 20. Feng, S.S., Geng, H.R., Guo, Z.Q. Effect of lubricants on warm compaction process of Cu-based composite. Compos. B: Eng. 2012; 43(3): 933–9. https://doi:10.1016/j.compositesb.2011.09.004.
- 21. Ibrahim, M.H.I., Abdul Razak, M.I., Mustafa, N., Selamat, M.A. Carbon-Copper (C-Cu) composites using local carbon material through warm compaction process for potential electrical and electronic applications. ARPN J. Eng. Appl. Sci. 2016; 11(18): 11117–23. http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0916_5044.pdf.
- 22. Wang, P., Zhu, Z., Liu, J., Wang, H., Pang, J., Zhang, J. Finemet nanocrystalline magnetic powder cores: Application of binder and warm compaction process. J. Magn. Magn. Mater. 2024; 596: 171985. https://doi.org/10.1016/j.jmmm.2024.171985.
- 23. Huang, H., Zhang, R., Sun, H., Zhang, J., Wang, J. High density Fe-based soft magnetic composites with nice magnetic properties prepared by warm compaction. J. Alloys Compd. 2023; 947(169460): 1–10. https://doi.org/10.1016/j.jallcom.2023.169460.
- 24. Nassef, A., El-Garaihy, W.H., El-Hadek, M. Characteristics of cold and hot pressed iron aluminum powder metallurgical alloys. Metals. 2017; 7(5). https://doi:10.3390/met7050170.
- 25. Omar, H.D. The analysis of copper-iron metallic mixture by means of XRD and XRF. International Letters of Chemistry, Physics and Astronomy. 2016; 64: 130–4. https://doi.org/10.56431/p-tj32k9.
- 26. Karnati, S., Liou, F.F., Newkirk, J.W. Characterization of copper–nickel alloys fabricated using laser metal deposition and blended powder feedstocks. Int. J. Adv. Manuf. Tech. 2019; 103: 239–50. https://doi.org/10.1007/s00170-019-03553-0.
- 27. Shang, X., Wang, X., Chen, S. Effects of ball milling processing conditions and alloy components on the synthesis of Cu-Nb and Cu-Mo alloys. Materials. 2019; 12(8): 1–9. https://doi.org/10.3390/ma12081224.
- 28. Dong, D., Duan, L., Cui, J., Li, G., Jiang, H., Pan, H. Influence of compaction temperature on the mechanical properties and micro morphology of Cu/CNTs composites prepared by electromagnetic impacting. Powder Technol. 2022; 396: 433–43. https://doi.org/10.1016/j.powtec.2021.11.014.
- 29. Majzoobi, G.H., Bakhtiari, H., Atrian, A., Pipelzadeh, M.K., Hardy, S. Warm dynamic compaction of Al6061/SiC nanocomposite powders. Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl. 2015; 230: 1–13. https://doi.org/10.1177/1464420714566628.
- 30. Singh, R., Sharma, A.K., Sharma, A.K. Physical and mechanical behavior of NiTi composite fabricated by newly developed uni-axial compaction die. Mater. Res. 2021; 24(3): 1–10. https://doi.org/10.1590/1980-5373-MR-2020-0549.
- 31. Zhou, Y., Wang, J. Mechanical properties of thermally annealed Cu/Ni and Cu/Al multilayer thin films: Solid solution vs. intermetallic strengthening. Metals. 2024; 14: 1–12. https://doi.org/10.3390/met14030256.
- 32. Çelık, E., Aslan, A.K. The effect of porosity and curate on microstructure and mechanical properties of co alternative powder metallurgy compound. Sci. Sinter. 2017; 49(3): 225–34. https://doi.org/10.2298/SOS1703225C.
- 33. Xing, H., Hu, P., Han, J., Li, S., Ge, S., Hua, X. Effects of oxygen on microstructure and evolution mechanism of body-centered-cubic molybdenum. Int. J. Refract. Met. Hard Mater. 2022; 103: 105747. https://doi.org/10.1016/j.ijrmhm.2021.105747.
- 34. Moser, M., Lorand, S., Bussiere, F., Demoisson, F., Couque, H., Bernard, F. Influence of carbon diffusion and the presence of oxygen on the microstructure of molybdenum. Metals. 2020; 10(948): 1–17. https://doi.org/10.3390/met10070948.
- 35. Spilker, B., Linke, J., Pintsuk, G., Wirtz, M. Oxide segregation and melting behavior of transient heat load exposed beryllium. Nucl. Fusion. 2016; 56: 1–9. https://doi.org/10.1088/0029-5515/56/10/106014.
- 36. Jiao, X., Zhang, Y., Wu, Q., Shang, Z., Yu, Y. High-temperature oxidation behavior and pore structure of porous TiAl3 intermetallics at 650°C to 900°C. J. Mater. Res. Technol. 2023; 22: 2398–408. https://doi.org/10.1016/j.jmrt.2022.12.074.
- 37. Li, Q., Liu, Z., Liu, X., Wang, L., Zang, C., Li, L., Rivera-Diaz, P.E.J., Del-Castillo. Enabling Invar to Ti6Al4V transitions through copper in functionally graded laser powder bed fused components. J. Mater. Res. Technol. 2024; 32: 2595–608. https://doi.org/10.1016/j.jmrt.2024.08.122.
- 38. Chang, C.C., Wu, M.R. Effects of particle shape and temperature on compaction of copper powder at micro scale. In: International Conference on Precision Machinery and Manufacturing Technology. Kending, Taiwan: MATEC Web of Conferences; 2017. https://doi.org/10.1051/matecconf/201712300011.
- 39. Wang, D., Li, M., An, X. Numerical study on the warm compaction and solid-state sintering of TiC/316L composite powders from particulate scale. Powder Technol. 2022; 402: 1–19. https://doi.org/10.1016/j.powtec.2022.117361.
- 40. Necas, D., Marek, I., Pinc, J., Vojtech, D., Kubásek, J. Advanced zinc – magnesium alloys prepared by mechanical alloying and spark plasma sintering. Materials. 2022; 15: 1–17. https://doi.org/10.3390/ma15155272.
- 41. Wciślik, W., Lipiec, S. Void-induced ductile fracture of metals: Experimental observations. Materials. 2022; 15(18). https://doi.org/10.3390/ma15186473.
- 42. Jabłoński, M., Knych, T., Mamala, A., Smyrak, B., Wojtaszek, K. Influence of Fe and Si addition on the properties and structure conductivity of aluminium. Arch Metall Mater. 2017; 62(3): 1541–1547. https://doi.org/doi.10.1515/amm-2017-0237.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac66b9d5-d8ae-41e6-87e7-6a951e18bb56
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.