PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the Signal Quality of an Ultrasonic Sensor on Different Conductive Yarns Used as Transmission Lines

Identyfikatory
Warianty tytułu
PL
Określenie jakości sygnału czujnika ultradźwiękowego przy różnych rodzajach przędz przewodzących stosowanych jako linie przesyłowe
Języki publikacji
EN
Abstrakty
EN
The field of electronic textiles is still relatively new and extending due to technology miniaturisation. In this article, the integration of an ultrasonic sensor into a textile structure was realised and analysed in order to develop a system able to help visually impaired people. The performance of ultrasonic sensors was tested by means of five different conductive yarns used as transmission lines, in three different configurations for the purpose of detecting the eventual existing off disturbances and their values. Finally, the influence of the conductive yarn type on the performance of the ultrasonic sensor was discussed. The results highlighted that the linear resistance of conductive yarn has a strong influence on the sensor’s signal quality.
PL
Tekstylne wyroby tekstroniczne są ciągle nową dziedziną wymagającą intensywnych badań. W artykule opisano badania związane z integracją czujników ultradźwiękowych w odzieży tekstronicznej, które mogą być pomocne np. przy identyfikacji przedmiotów przez niewidomych. Zachowanie tych czujników badano przy zastosowaniu pięciu różnych przędz przewodzących stosowanych jako linie przesyłowe, w trzech różnych konfiguracjach dla kreślenia ewentualnie występujących zakłóceń i ich wielkości. Po dyskusji wyników stwierdzono, że wartość rezystancji liniowej stosowanych przędz odgrywa istotna rolę w jakości sygnałów przekazywanych przez czujniki ultradźwiękowe.
Rocznik
Strony
75--81
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Turkey, Istanbul, Istanbul Technical University, Textile Engineering Department Kursun-Bahadir Senem France
  • Roubaix, ENSAIT, GEMTEX
autor
  • Turkey, Istanbul, Istanbul Technical University, Textile Engineering Department
autor
  • Turkey, Istanbul, Istanbul Technical University, Textile Engineering Department
autor
  • Romania, Jassy, Technical University of Jassy, Faculty of Textiles and Industrial Management
autor
  • USTL ENSAIT, GEMTEX F-59100, Roubaix, France
Bibliografia
  • 1. Katragadda R. B., XuY.; A Novel Intelligent Textile Technology Based on Silicon Flexible Skins, Sensors and Actuators, Vol. A143, 2008 pp. 169–174.
  • 2. Teller A.; A platform for wearable physiological computing, Interacting with Computers, Vol. 16, 2004 pp. 917–937.
  • 3. Choi S., Jiang Z.; A Novel Wearable Sensor Device with Conductive Fabric and PVDF Film for Monitoring Cardiorespiratory Signals, Sensors and Actuators, Vol. A128, 2006 pp. 317–326.
  • 4. Hung K., Zhang Y. T., Tai B.; Wearable Medical Devices for Tele-Home Healthcare, Proc. of the 26th Annual Int.Conference of the IEEE Engineering in Medicine and Biology, 2004 pp. 5384-5387.
  • 5. Suenaga T., Sasaki H., Masuda Y., Imura M., Yasumuroa Y., Yutani A., Manabe Y.,Oshirob O., Chihara K.; Wearable ultrasound device for ubiquitous medical care environments, International CongressSeries, Vol. 1268, 2004 pp. 265–270.
  • 6. Lin C. S., Hsu C. H, Lay L. Y., Chio C. C., Chao C. C.; Wearable device for real-time monitoring of human falls, Measurement, Vol. 40, 2007 pp. 831–840.
  • 7. Rossi D. D., Carpi F., Scilingo E. P.; Polymer based interfaces as bioinspired smart skins, Advances in Colloid and Interface Science, Vol. 116, 2005 pp. 165-178.
  • 8. Dittmar, A. Meffre R., Oliveira F., Gehin C., Delhomme C., Wearable Medical Devices Using Textile and Flexible Technologies for Ambulatory Monitoring, Proc. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005 pp. 7161-7164.
  • 9. Tang S. P., Recent developments in flexible wearable electronics for monitoring applications, Transactions of the Institute of Measurement and Control, Vol. 29, 2007 pp. 283–300.
  • 10. Zhang H., Tao X. Wang S., Yu T.; Electro-Mechanical Properties of Knitted Fabric Made From Conductive Multi-Filament Yarn Under Unidirectional Extension, Textile Research Journal, Vol. 75, 2005 p. 598.
  • 11. Li L., Man W. AU., Wan K. M., Wan S.H., Chung W. Y., Wong K. S.; A Resistive Network Model for Conductive Knitting Stitches, Textile Research Journal, 2010 Vol. 80, No. 10, pp. 935-947.
  • 12. Kayacan, O., Bulgun, E., and Sahin, O., Implementation of Steel-based Fabric Panels in a Heated Garment Design, Textile Research Journal, Vol. 79(16), 2009 pp. 1427–1437.
  • 13. Su C. I., Chern J. T.; Effect of Stainless Steel-Containing Fabrics on Electromagnetic Shielding Effectiveness, Textile Research Journal, Vol. 74, 2004 pp. 51-54.
  • 14. Li L., Man Au W., Li Y. Man Wan M. K, Wan S. H., Wong K. S.; Design of Intelligent Garment with Transcutaneous Electrical Nerve Stimulation Function Based on the Intarsia Knitting Technique, Textile Research Journal, Vol. 80(3), 2010 pp. 279–286.
  • 15. Paradiso R., Loriga G., Taccini N.; A Wearable Health Care System Based on Knitted Integrated Sensors, IEEE Transactions On Information Technology In Biomedicine, Vol. 9 (3), 2005 pp. 337-344.
  • 16. Li L., Au W. M., Li Y., Wan K. M., Chung W. Y., Wong K. S.; A Novel Design Method for an Intelligent Clothing Based on Garment Design and Knitting, Textile Research Journal, Vol. 79(18), 2009 pp. 1670-1679.
  • 17. Locher I., Gerhard Tröster G.; Enabling Technologies for Electrical Circuits on a Woven Monofilament Hybrid Fabric, Textile Research Journal, Vol. 78(7), 2008 pp. 583-594.
  • 18. Chen H. C., Lin J. H., Lee K. C.; Electromagnetic Shielding Effectiveness of Copper/Stainless Steel/Polyamide Fibre Co-Woven-Knitted Fabric Reinforced Polypropylene Composites, Journal of Reinforced Plastics and Composites, Vol. 27(2), 2008 pp. 187-203.
  • 19. Zhang H., Tao X., Yu T., Wang S.; Conductive knitted fabric as large-strain gauge under high temperature, Sensors and Actuators, Vol. A126, 2006 pp. 129-140.
  • 20. Lai K., Sun R-J., Chen M-Y., Wu H., Zha A-X.; A. Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments, Textile Research Journal, Vol. 77(4), 2007 pp. 242–246.
  • 21. Ramachandran T., Vigneswaran C., Design and Development of Copper Core Conductive Fabrics for Smart Textiles, Journal of Industrial Textiles, Vol. 39, 2009 pp. 81-92.
  • 22. Huanga C-T., Shen C-L., Tang C-F., Changa S-H.; A wearable yarn-based piezo-resistive sensor, Sensors and Actuators, Vol. A141, 2008 pp. 396-403.
  • 23. Hertleer C., Van Laere A., Rogier H., Langenhove L. V.; Influence of Relative Humidity on Textile Antenna Performance, Textile Research Journal, Vol. 80(2), 2010 pp. 177-183.
  • 24. Dhawan, A., Tushar K.,Ghosh, Seyam, A. M. and Muth, J. F., Woven Fabric-Based Electrical Circuits: Part II: Yarn and Fabric Structures to Reduce Crosstalk Noise in Woven Fabric-Based Circuits, Textile Research Journal, 74(11), 955-960 (2004)
  • 25. Kim S., Leonhardt S., Zimmermann N., Kranen P., Kensche D., Müller E., Quix E.; Influence of contact pressure and moisture on the signal quality of a newly developed textile ECG sensor shirt, Proceedings of the 5th International Workshop on Wearable and Implantable Body Sensor Networks, China. 2008 Jun 1-3, pp. 256-259.
  • 26. Puurtinen M. M., Komulainen S. M., Kauppinen P. K., Malmivuo J. A. V., Hyttinen J. A.K.; Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel, Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, USA, Aug 30-Sept 3, 2006
  • 27. Cardin S. Thalmann D., Vexo F.; Wearable System for Mobility Improvement of Visually Impaired People, Visual Computer, Vol. 23(2), 2007 pp. 109-118.
  • 28. www.maxbotix.com, LV-MaxSonar ®-EZ3™ Data Sheet, Maxbotix Inc.
  • 29. www.pointcarre.com/Textile Design Software.
  • 30. TexGen Software.
  • 31. Kursun S. Kalaoglu F., Thomassey S.,Cristian I. Koncar V.; Integration of sonar sensor to textile structure, HighTex 2010 Conference, Istanbul, 16-18 May 2010.
  • 32. Choma A. M., Sarunic M. V., Yang C., Izatt J. I.; Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Optics Express, Vol. 11(18), 2003.
  • 33. Alvarezetal J., Yanez Y., Prego L., Turo A., Chavez J, Garcia M., Salazar J., Noise level analysis in bufferrod geometries for ultrasonic sensors, Ultrasonics, Vol. 44, 2006 pp. 1093–1100.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac64cdd7-a00d-4134-ba4d-94b196949fcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.