Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Work on increasing the efficiency of heat exchangers used in car air conditioning systems may lead to a partial change in the construction of refrigeration systems. One of such changes is the use of smaller gas coolers, which directly translates into a reduction in the production costs of the entire system. The article presents the use of computational fluid dynamics methods to simulate the impact of changing the shape of an internal heat exchanger on the cooling efficiency with R744 as the refrigerant. Internal heat exchangers with different geometry of the outer channels were subjected to numerical analysis. The obtained results of calculations show temperature changes in inner and outer channels on the length of the heat exchanger.
Czasopismo
Rocznik
Tom
Strony
145--160
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Strata Mechanics Research Institute of Polish Academy of Science, Reymonta 27, 30-059 Kraków, Poland
autor
- Strata Mechanics Research Institute of Polish Academy of Science, Reymonta 27, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
- [1] Furberg R., Palm B., Li S., Toprak M., Muhammed M.: The use of a nanoand microporous surface layer to enhance boiling in a plate heat exchanger. J. Heat Trans. 131(2009). DOI: 10.1115/1.3180702.
- [2] Wajs J., Mikielewicz D.: Effect of surface roughness on thermal-hydraulic characteristics of plate heat exchanger. Key Engineering Materials 597(2014), 63–74. DOI: 10.4028/www.scientific.net/KEM.597.63.
- [3] Wajs J., Mikielewicz D.:Influence of metallic porous microlayer on pressure drop and heat transfer of stainless steel plate heat exchanger. Appl. Therm. Eng. 93(2016), 1337–1346. DOI: 10.1016/j.applthermaleng.2015.08.101.
- [4] Zhang F.Z., Jiang P.X., Lin Y.S., Zhang Y.W.: Efficiencies of subcritical and transcritical CO2 inverse cycles with and without an internal heat exchanger. Appl. Therm. Eng. 31(2011), 432–438. DOI:10.1016/j.applthermaleng.2010.09.018.
- [5] Pettersent J., Hafner A., Skaugen G.: Development of compact heat exchangers for CO2 air-conditioning systems. Int. J. Refrig. 21(1998), 180–193. DOI: 10.1016/S0140-7007(98)00013-9.
- [6] Liu H., Chen J., Chen Z.: Experimental investigation of a CO2 automotive air conditioner. Int. J. Refrig. 28(2005), 1293–1301. DOI: 10.1016/j.ijrefrig.2005.08.011.
- [7] Tamura T., Yakumaru Y., Nishiwaki F.: Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant. Int. J. Refrig. 28(2005), 1302–1307. DOI: 10.1016/j.ijrefrig.2005.09.010.
- [8] Li M.J., Zhang H., Zhang J., Mu Y.T., Tian E., Dan D., Zhang X.D., Tao W.Q.: Experimental and numerical study and comparison of performance for wavy fin and a plain fin with radiantly arranged winglets around each channel in fin-and channel heat exchangers. Appl. Thermal Eng. (2018). DOI: 10.1016/j.applthermaleng.2018.01.012.
- [9] Tao Y.B., He Y.L., Tao W.Q., Wu Z.G.: Experimental study on the performance of CO2residential air-conditioning system with an internal heat exchanger. Energ. Convers. Manage. 51(2010) 64–70. DOI: 10.1016/j.enconman.2009.08.024.
- [10] Llopis R., Sanz-Kock C., Cabello R., Saanchez D., Torrella E.: Experimental evaluation of an internal heat exchanger in a CO2 subcritical refrigeration cycle with gas-cooler. Appl. Thermal Eng. 80(2015), 31–41. DOI: 10.1016/j.applthermaleng.2015.01.040.
- [11] Sanchez D., Patino J., Llopis R., Cabello R., Torrella E., Fuentes F.V.: New positions for an internal heat exchanger in a CO2 supercritical refrigeration plant. Experimental analysis and energetic evaluation. Appl. Thermal Eng. 63(2014), 129–139. DOI: 10.1016/j.applthermaleng.2013.10.061.
- [12] http://www.chlodnice.net.pl/klimatyzacjasamochodowa.htm (accessed dd.nn.yy).
- [13] Wajs J., Mikielewicz D., Fornalik-Wajs E., Bajor M.: Recuperator with microjet technology as a proposal for heat recovery from low-temperature sources. Arch. Thermodyn. 36(2015), 4, 48–63. DOI: 10.1515/aoter-2015-0032.
- [14] Mikielewicz D., Wajs J.: Possibilities of heat transfer augmentation in heat exchangers with minichannels for marine applications. Pol. Marit. Res. 24(2017), Spec. iss. 1, 133–140. DOI: 10.1515/pomr-2017-0031.
- [15] Rahman M.M., Kariya K., Miyara A.: An experimental study and development of new correlation for condition heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins. Int. J. Heat Mass Tran. 116(2018), 50–60. DOI: 10.1016/j.ijheatmasstransfer.2017.09.010.
- [16] Mahmood M., Bhutta A., Hayat N., Bashir M.H., Khan A.R., Ahmad K.N., Khan S.: CFD applications in various heat exchangers design: A review. Appl. Thermal Eng. 32(2012), 1–12. DOI: 10.1016/j.applthermaleng.2011.09.001.
- [17] Ituna-Yudonago J.F., Belman-Flores J.M., Elizalde-Blancas F., GarcíaValladares O.: Numerical investigation of CO2 behavior in the internal heat exchanger under variable boundary conditions of the transcritical refrigeration system. Appl. Thermal Eng. 115(2017), 1063–1078. DOI: 10.1016/j.applthermaleng.2017.01. 042.
- [18] Li J., Jia J., Huang L., Wang S.: Experimental and numerical study of an integrated fin and micro-channel gas cooler for a CO2 automative air-conditioning. Appl. Thermal Eng. 116(2017), 636–647. DOI: 10.1016/j.applthermaleng.2016.12.140.
- [19] Ansys Inc (2016): Ansys Fluent Users Guide
Uwagi
EN
Presented article was created as part of the PBS project no /B5/43/2015.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac62a080-5e76-4d55-8a73-525597ea00fd