Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The FDM method, which employs a metal powder filament with a polymer binder, results in the production of sintered H13 steel. The technique is characterised by a multi-step process, low cost, and no waste, rendering it suitable for both small and medium-scale production. Nevertheless, the successful production of H13 steel parts using this method hinges on the meticulous design of the process to eliminate the polymeric binder that serves as an elastic matrix for the metal powder in the filaments. A study was conducted to identify the optimal conditions for binder debinding and powder sintering, and to evaluate their efficacy in relation to the type of filaments comprising a significant proportion of H13 steel powder. Furthermore, the chemical structure of the polymers was analysed by FTIR spectroscopy, with consideration given to the impact of varying debinding parameters. Furthermore, the morphology and structure of the material following the printing and sintering processes were investigated using scanning electron microscopy. Thermal analysis plays a pivotal role in the design of novel material fabrication techniques utilising Metal FDM technology. It allows for the comprehension of the thermal properties of materials, thereby facilitating the optimisation of process conditions. The findings of the study present an alternative approach to the manufacturing of metal components through sintering, and emphasise the significance of optimisation processes.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
321--332
Opis fizyczny
Bibliogr. 28 poz., fig., tab.
Twórcy
autor
- Scientific and Teaching Laboratory of Nanotechnology and Material Technologies, The Silesian University of Technology, Towarowa 7a, Gliwice, Poland
autor
- Scientific and Teaching Laboratory of Nanotechnology and Material Technologies, The Silesian University of Technology, Towarowa 7a, Gliwice, Poland
Bibliografia
- 1. Kadir A. Z. A., Yusof Y., Wahab M. S. Additive manufacturing cost estimation models—a classification review. The International Journal of Advanced Manufacturing Technology 2020, 107, 4033–4053. https://doi.org/10.1007/s00170-020-05262-5
- 2. Gorjan L., Galusca C., Sami M. Effect of stearic acid on rheological properties and printability of ethylene vinyl acetate based feedstocks for fused filament fabrication of alumina. Additive Manufacturing 2020, 36, 1–25. https://doi.org/10.1016/j.addma.2020.101391
- 3. Singh G., Missiaen J.M., Bouvard D. Copper extrusion 3D printing using metal injection moulding feedstock: Analysis of process parameters for green density and surface roughness optimization. Additive Manufacturing 2021, 38, 1–40. https://doi.org/10.1016/j.addma.2020.101778
- 4. Zubrzycki J., Estrada Q., Staniszewski M., Marchewka M. Influence of 3D printing parameters by FDM method on the mechanical properties of manufactured parts. Adv. Sci. Technol. Res. J. 2022, 16, 5, 52–63. https://doi.org/10.12913/22998624/154024
- 5. Szczęch M., Sikora W. The influence of printing parameters on leakage and strength of fused deposition modelling 3D printed parts. Adv. Sci. Technol. Res. J. 2024, 18, 1, 195–201. https://doi.org/10.12913/22998624/178330
- 6. Abdulridha H. H., Abbas T. F., Bedan A. S. Investigate the effect of chemical post processing on the surface roughness of fused deposition modeling printed parts. Adv. Sci. Technol. Res. J. 2024, 18, 2, 47–60. https://doi.org/10.12913/22998624/183528
- 7. Gocki M., Nowak J. A. Autocatalytic metallization of polymer materials produced by the additive technology, Adv. Sci. Technol. Res. J. 2024, 18, 4, 97–110. https://doi.org/10.12913/22998624/188540
- 8. Bazarbay B. B., Kurbanova B. A., Absadykov B. N. et. al. Investigation of the effect of thermal posttreatment od density and hardness of a green part printed with FFF technology. Journal of Chemical Technology and Metallurgy 2022, 57, 6, 1258–1266.
- 9. Thompson Y., Gonzalez-Gutierrez J., Kukla C., et. al. Fused filament fabrication, Debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Additive Manufacturing 2019, 30. https://doi.org/10.1016/j.addma.2019.100861
- 10. Ray S., Cooney R.P., Thermal Degradation of polymer and polymer composites. Handbook of Environmental Degradation of Materials. Kutz M, editor. William Andrew Publishing 2018, 17, 185–206. https://doi.org/10.1016/B978-0-323-52472-8.00009-5
- 11. Pielichowski K., Njuguna J., Majka T. Thermal degradation of polymeric materials, Elsevier 2022. https://doi.org/10.1016/C2019-0-04932-1
- 12. Singh B., Sharma N. Mechanistic implications of plastic degradation. Polymer Degradation and Stability 2008, 93, 561–584. https://doi.org/10.1016/j.polymdegradstab.2007.11.008
- 13. Van Krevelen DW. Properties of Polymers. Amsterdam. Elsevier 2009, 16.
- 14. Mark J. Physical Properties of Polymers Handbook. Springer.
- 15. Lis J., Pampuch R. Sintering, Book, AGH – Uczelniane Wydawnictwa Naukowo-Dydaktyczne Kraków 2000. (in Polish).
- 16. Ursi F. Characterization of Metal FDM process and final mechanical performances evaluation, Politecnico di Torino. Department of Mechanical and Aerospace Engineering. Master Thesis. 2023.
- 17. Chaudhary R., Ali P., Gandhare N., et al. Thermal decomposition kinetics of some transition metal coordination polymers of fumaroyl bis (paramethoxyphenylcarbamide) using DTG/DTA techniques. Arabian Journal of Chemistry 2019, 12, 1070–1082. https://doi.org/10.1016/j.arabjc.2016.03.008
- 18. Ramazani H., Kami A. Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review. Progress in Additive Manufacturing 2022, 7, 609–626. https://doi.org/10.1007/s40964-021-00250-x
- 19. H13 steel Zetamix Filament. https://zetamix.fr/en/produit/filament-zetamix-h13-en/. Accessed 15 Nov 2023.
- 20. Zetamix General guidelines Tool steel H13. https://zetamix.fr/wp-content/uploads/2023/07/GuidelineH13.pdf. Accessed 15 Nov 2023.
- 21. Zetamix H13 steel datasheet. https://zetamix.fr/wp-content/uploads/2023/08/Datasheet-Zetamix-H13.pdf. Accessed 15 Nov 2023.
- 22. Riva L., Fiorentino A., Ceretti E. Characterization of the chemical finishing process with a cold acetone bath of ABS parts fabricated by FFF. Selected Topics in Manufacturing. Lecture Notes in Mechanical Engineering. 2022, 38, 77–89. https://doi.org/10.1007/978-3-030-82627-7_5
- 23. Arostegui A., Sarrionandia M., Aurrekoetxea J., et al. Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile–butadiene–styrene copolymer. Polymer Degradation and Stability 2006, 91, 2768–2774. https://doi.org/10.1016/j.polymdegradstab.2006.03.019
- 24. https://medium.com/@solventwashertx/acetone-recycling-unlocking-cost-savings-and-sustainability40f1dc30610e. Accessed 15 Nov 2023.
- 25. Mohamed M.A., Jaafar J., Ismail A.F., et al. Fourier Transform Infrared (FTIR) Spectroscopy, Editor(s): Hilal N, Ismail A, Matsuura T, Membrane Characterization. Elsevier 2017, 3–29.
- 26. Spinella L., Bosco N. FTIR Investigation of EVA Chemical Bonding Environment and Its Impact on Debond Energy. IEEE Journal of Photovoltaics 2019, 9, 790–795. https://doi.org/10.1109/JPHOTOV.2019.2904219
- 27. Liu G., Liao Y., Ma X. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR. Waste Management 2017, 61, 315–326. https://doi.org/10.1016/j.wasman.2017.01.034
- 28. Agirre A., Aguirre M., Leiza JR. Characterization of grafting properties of ABS latexes: ATR-FTIR vs NMR spectroscopy. Polymer 2022, 253. https://doi.org/10.1016/j.polymer.2022.124997
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac54b624-b82d-4293-a0e7-41424f821566
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.