PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Grafen – materiał przyszłości

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Graphene – material of the future
Języki publikacji
PL
Abstrakty
PL
Artykuł zawiera przegląd literatury dotyczący wyników badań, jakie prowadzone są na nowo odkrytym materiale grafenie. Przedstawione zostały najpopularniejsze metody jego otrzymywania. Ponadto zaprezentowano i omówiono poznane do tej pory właściwości oraz potencjalne obszary jego zastosowania (wraz z praktycznymi przykładami wykorzystania). Zaprezentowano również najważniejsze kierunki dalszych badań oraz możliwości jego wpływu na przyszłość techniki.
EN
This article contains a literature review of research results which are conducted on newly discovered material graphene. Article presents most popular method of its production. Moreover, were presented and discussed so far known properties and areas of application (with practical examples of application). This article presents also the main directions of further research and its possible influence on the future of technology.
Rocznik
Strony
45--53
Opis fizyczny
Bibliogr. 51 poz., tab.
Twórcy
autor
  • Instytut Inżynierii Materiałowej, Wydział Mechaniczny, Politechnika Krakowska
autor
  • Instytut Inżynierii Materiałowej, Wydział Mechaniczny, Politechnika Krakowska
Bibliografia
  • [1] Raton B., Arbor A., CRC Handbook of Chemistry and Physics, Wyd. 86, CRC Press, Inc., Londyn, Tokio 2006, 12-212.
  • [2] Encyklopedia fizyki, praca zbiorowa, t. 1, PWN 1973.
  • [3] Bolewski A., Manecki A., Mineralogia szczegółowa, Wyd. PAE, Warszawa 1993, 38.
  • [4] Menneken M. et al., Hadean diamonds in zircon from Jack Hills, Western Australia Nature 448, 2007, 917-920.
  • [5] Zicheng Pan, Hong Sun, Yi Zhang, Changfeng Chen., Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite, 2009, 102.
  • [6] Cami J., Bernard-Salas J., Peeters E., Malek S.E., Detection of C60 and C70 in a Young Planetary Nebula, Science 329, 210, 1180-1182.
  • [7] Buseck P.R., Tsipursky S.J., Hettich R., Fullerenes from the Geological Environment, Science 257, 1992, 215-222.
  • [8] Kroto H.W. et al., C60: Buckminsterfullerene, Nature 318, 1985, 162-163.
  • [9] Tenne R., Margulis L., Genut M., Hodes G., Polyhedral and cylindrical structures of tungsten disulphide, Nature 360, 1992, 444-446.
  • [10] Boehm H.P., Setton R., Stumpp E., Nomenclature and terminology of graphite intercalation compounds, Pure and Applied Chemistry 66, 1994, 1893-1901.
  • [11] Scientific American nr 298, Carbon Wonderland, 2008, 90-97.
  • [12] Science nr 324, Graphene: Status and prospects, 2009, 1530-1534.
  • [13] http://nobelprize.org/nobel_prizes/physics/laureates/2010/sciback_phy_10_2.pdf.
  • [14] Novoselov K.S. et al., Two-dimensional atomic crystals, Proc. Natl Acad. Sci., USA.
  • [15] Science nr 331, Layer-by-Layer Removal of Graphene for Device Patterning, 2011, 1168-1172.
  • [16] http://www.if.uj.edu.pl/Foton/111/pdf/04%20grafen2010.pdf.
  • [17] Fuhrer M.S., A physicist peels back the layers of excitement about grapheme, Nature 459, 2009.
  • [18] Nair R.R. et al., Fine Structure Constant Defines Visual Transparency of Graphene, Science 320, 2008.
  • [19] http://www.eioba.pl/a/2waz/zastosowanie-grafenu-w-technice.
  • [20] Zhang Y. et al., Direct observation of a widely tunable bandgap in bilayer grapheme, Nature 459, 2009, 820-823.
  • [21] Dima B., Thermodynamic properties of tunneling quasiparticles in graphene-based structures, Physica C: Superconductivity 471, 2011.
  • [22] Hadar S. et al., Charge fractionalization in quantum wires (Letter), Nature Physics 2008, 116-119.
  • [23] Sakamoto J. et al., Two-Dimensional Polymers: Just a Dream of Synthetic Chemists?, Angew. Chem. Int. Ed. 48 (16), 2009, 1030-1099.
  • [24] Amini S. et. al., Growth of Large-Area Graphene Films from Metal-Carbon Melts, Journal of Applied Physics 108, 2010.
  • [25] http://www.xgsciences.com/aboutxgnp.html.
  • [26] Segal M., Selling graphene by the ton, Nature Nanotechnology 4, 2009, 612-616.
  • [27] http://www.newscientist.com/article/dn16506-organic-computing-takes-a-step-closer.html.
  • [28] Barras C., Organic computing takes a step closer, New Scientist, 2009.
  • [29] Miller D.A.B., Are optical tranistors the logi cal next step?, Nature Photon. 4, 2010, 3-5.
  • [30] Reed G.T. et. al., Silicon optical modulators, Nature Photon. 4, 2010, 518-526.
  • [31] Liu A.S., A high-speed silicon optical modulator based on metal-oxide-semiconductor capacitor, Nature 427, 2004, 615-618.
  • [32] Wu J.B. et al., Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes, ACS Nano 4, 2010.
  • [33] Kuo Y.H., Strong quantum-confined Stark effect in germanium quantum-well structures on silicon, Nature 437, 2005, 1334-1336.
  • [34] Liu J., Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators, Nature Photon. 2, 2008, 433-437.
  • [35] Miller D.A.B., Band-edge electroabsorption in quantum well structures [mdash] the quantum-confined Stark-effect, Phys. Rev. Lett. 53, 1984, 2173-2176.
  • [36] Xu Q. et. al., Micrometre-Scale silicon electro-optic modulator, Nature 435, 2005, 325-327.
  • [37] Lei L., Xiangfeng D., Graphene–dielectric integration for graphene transistors, Materials Science and Engineering, R. 70, 2010, 354-370.
  • [38] Liu M. et. al., A graphene-based broadband optical modulator, Nature 474, 2011, 64-67.
  • [39] Bolmatov D., Chung-Yu M., Josephson effect in graphene SNS junction with a single localized defect, Physica B: Condensed Matter 405, 2010.
  • [40] Bolmatov D., Chung-Yu M., Tunneling conductance of the graphene SNS junction with a single localized defect, Journal of Experimental and Theoretical Physics (JETP), 2010.
  • [41] Ekiz O.O. et al., Supporting information for Reversible Electrical Reduction and Oxidation of Graphene Oxide, 2011.
  • [42] Chen J. et.al., Printed graphene circuits, Advanced Materials 19 (21), 2007, 3623-3627.
  • [43] Han M.Y. et.al., Energy Band-Gap Engineering of Graphene Nanoribbons, Phys. Rev. Lett. 98, 2007.
  • [44] https://engineering.purdue.edu/CTRC/
  • [45] Nature Materials 6, 2007, 183-191.
  • [46] Maher F. El-Kady et.al., Laser Scribing of High-Performance and Flexible Graphene--Based Electrochemical Capacitors, Science 16, 2012, 1326-1330.
  • [47] http://www.nanowerk.com/news/newsid=24620.php
  • [48] Zhang Y. et.al., Experimental observation of the quantum Hall effect and Berry’s phase in grapheme, Nature 438, 2005, 201-204.
  • [49] Mattevi C., Kim H., Chhowalla M., A review of chemical vapour deposition of graphene on copper, Journal of Materials Chemistry 201, 3324-3334.
  • [50] Wei D. et.al., Nano Lett., 2009.
  • [51] Wu N., Geim J.G., Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335, 2012, 442-446.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac4a1679-e2da-4d05-aaee-ecccb59ddc29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.