Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents the concept of constructing three-component kinetic models of kerogen. The method was developed based on the kinetic mass model constructed from Rock-Eval pyrolysis and Py-GC analysis results. The parameters of the discrete function describing the distribution of activation energy (Ea) and the constant values of the reaction rate (A) for the mass model were optimized based on the results of Rock-Eval pyrolysis in the Kinetics15 program. With aid of multistage isothermal pyrolysis of Py-GC performed for the same duration at different temperatures, the percentages of each hydrocarbon fraction obtained during the successive stages of pyrolysis were determined. The determined fractions were assigned an appropriate (resulting from the mass model) value of activation energy. The multi-component kinetic model of kerogen constructed in this way enabled the calculation of the shares of individual hydrocarbon fractions generated at different stages of thermal transformation of the source rocks. Simulations of the composition of generated hydrocarbons for the developed model were carried out in the PetroMod Kinetic Editor. The results of the simulation justified the creation of multi-component kinetic models for each of the potential source formations located in the study area. Their implementation into the petroleum system model makes it possible to not only forecast the total amount of generated hydrocarbons but also the dynamics of the generation process and the shares of the generated fractions at various stages of thermal transformation of the source rocks. The research material consisted of Menilite source rocks samples, which are considered to be the main source of hydrocarbon accumulations in the Outer Carpathians.
Wydawca
Czasopismo
Rocznik
Tom
Strony
27--42
Opis fizyczny
Bibliogr. [35] poz., rys., tab., wykr.
Twórcy
autor
- Oil and Gas Institute – National Research Institute, Krakow, Poland
autor
- Oil and Gas Institute – National Research Institute, Krakow, Poland
autor
- Oil and Gas Institute – National Research Institute, Krakow, Poland
Bibliografia
- Abu-Ali M.A., Rudkiewicz J.L., McGillivray J.G. & Behar F., 1999. Paleozoic petroleum system of Central Saudi Arabia. GeoArabia, 4(3), 321–336. https://doi.org/10.2113/ geoarabia0403321.
- Baur F., 2019. Predicting petroleum gravity with basin modeling: New kinetic models. AAPG Bulletin, 103(8), 1811–1837. https://doi.org/10.1306/12191818064.
- Behar F., Vandenbroucke M., Tang Y., Marquis F. & Espitalie J., 1997. Thermal cracking of kerogen in open and closed systems: Determination of kinetic parameters and stochiometric coefficients for oil and gas generation. Organic Geochemistry, 26(5–6), 321–339. https://doi.org/ 10.1016/S0146-6380(97)00014-4.
- Bordenave M.L., 1993. Applied Petroleum Geochemistry. Editions Technip, Paris. Burnham A.K., 2017. Global Chemical Kinetics of Fossil Fuels: How to Model Maturation and Pyrolysis. Springer, Cham. https://doi.org/10.1007/978-3-319-49634-4.
- Burnham A.K. & Braun R.L., 1990. Development of a detailed model of petroleum formation, destruction, and expulsion from lacustrine and marine source rocks. Organic Geochemistry, 16(1–3), 27–39. https://doi.org/ 10.1016/0146-6380(90)90023-S.
- Burnham A.K. & Sweeney J.J., 1989. A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53, 2649–2657. https://doi.org/ 10.1016/0016-7037(89)90136-1.
- Dieckmann V., Schenk H.J., Horsfield B. & Welte D.H., 1998. Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales. Fuel, 77(1–2), 23–31. https://doi.org/10.1016/ S0016-2361(97)00165-8.
- Dieckmann V., Horsfield B. & Schenk H.J., 2000. Heating rate dependency of petroleum-forming reactions: Implications for compositional kinetic predictions. Organic Geochemistry, 31(12), 1333–1348. https://doi.org/10.1016/ S0146-6380(00)00105-4.
- Dziadzio P., Matyasik I., Garecka M. & Szydło A., 2016. Lower Oligocene Menilite Beds, Polish Outer Carpathians: Supposed deep-sea flysch locally reinterpreted as shelfal, based on new sedimentological, micropaleontological and organic-geochemical data. Prace Naukowe Instytutu Nafty i Gazu Państwowego Instytutu Badawczego, 213, Instytut Nafty i Gazu – Państwowy Instytut Badawczy, Kraków. https://doi.org/10.18668/PN2016.213.
- Espitalié J., Marquis F. & Barsony I., 1984. Geochemical logging. [in:] Voorhess K.J. (ed.), Analytical Pyrolysis, Butterworths, Boston, 53–79. Espitalié J., Deroo G. & Marquis F., 1985. La pyrolyse RockEval et ses applications. Deuxième partie. Revue de l’Institut Français du Pétrole, 40(6), 755–784. https://doi.org/ 10.2516/ogst:1985045.
- Espitalié J., Ungerer P., Irwin I. & Marquis F., 1988. Primary cracking of kerogens. Experimenting and modeling C1, C2–C5, C6–C15 and C15+ classes of hydrocarbons formed. Advances in Organic Geochemistry, 13(4–6), 893–899. https://doi.org/10.1016/0146-6380(88)90243-4.
- Hantschel T. & Kauerauf A., 2009. Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72318-9.
- Hunt J.M., 1979. Petroleum Geochemistry and Geology. Freeman and Co., San Francisco. Kania M. & Janiga M., 2015. Wykorzystanie pirolitycznej chromatografii gazowej do określania składu produktów symulowanego procesu generowania węglowodorów. Nafta-Gaz, 71(10), 720–728. https://doi.org/10.18668/ NG.2015.10.02.
- Krevelen D.W., van, 1961. Coal: Typology – Chemistry – Physics – Constitution. Coal Science and Technology Series, 3, Elsevier. Lafargue E., Marquis F. & Pillot D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production and in soil contamination studies. Oil & Gas Science and Technology, 53(4), 421–437. https://doi.org/10.2516/ogst:1998036.
- Lewan M.D. & Ruble T.E., 2002. Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Organic Geochemistry, 33(12), 1457–1475. https://doi.org/10.1016/S0146- 6380(02)00182-1.
- Matyasik I. & Dziadzio P.S., 2006. Reconstruction of petroleum system based on integrated geochemical and geological investigation: Selected examples from middle Outer Carpathians in Poland. [in:] Golonka J. & Picha F.J. (eds.), The Carpathians and Their Foreland: Geology and Hydrocarbon Resources, AAPG Memoir, 84, American Association of Petroleum Geologists, Tulsa, 497–518. https://doi.org/10.1306/985618M843076.
- Matyasik I. & Kupisz L., 1996. Geologiczno-geochemiczne uwarunkowania generacyjne warstw menilitowych depresji strzyżowskiej. Nafta-Gaz, 52(11), 469–479.
- Pepper A.S. & Corvi P.J., 1995. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology, 12(3), 291–319.
- Quigley T.M., Mackenzie A.S. & Gray J.R., 1987. Kinetic theory of petroleum generation. [in:] Doligez B. (ed.), Migration of Hydrocarbons in Sedimentary Basins: 2nd IFP Exploration Research Conference, Carcans, France, June 15–19, 1987, Editions Technip, Paris, 649–666.
- Santamaria-Orozco D.M., 2000. Organic Geochemistry of Tithonian Source Rocks and Associated Oils from the Sonda de Campeche, Mexico. Berichte des Forschungszentrums Jülich, 3763, Forschungszentrum, Zentralbibliothek, Jülich.
- Sowiżdżał K., Słoczyński T., Sowiżdżał A., Papiernik B. & Machowski G., 2020. Miocene Biogas Generation System in the Carpathian Foredeep (SE Poland): A Basin Modeling Study to Assess the Potential of Unconventional Mudstone Reservoirs. Energies, 13(7), 1–26. https://doi. org/10.3390/en13071838.
- Spunda K., 2020. Modelowanie 1D procesów generowania węglowodorów z warstw istebniańskich w profilu odwiertu nawiercającego utwory jednostki śląskiej. Nafta-Gaz, 76(2), 57–75. https://doi.org/10.18668/NG.2020.02.01.
- Spunda K. & Słoczyński T., 2022. Energia aktywacji utworów warstw menilitowych i jej implikacje dla procesu generowania węglowodorów w Karpatach. Nafta-Gaz, 78(5), 327–335. https://doi.org/10.18668/NG.2022.05.01.
- Spunda K., Słoczyński T. & Sowiżdżał K., 2021. Ocena wpływu nasuwającego się górotworu karpackiego na przebieg procesów naftowych w utworach jego podłoża w rejonie Rzeszowa. Nafta-Gaz, 77(6), 351–365. https://doi. org/10.18668/NG.2021.06.01.
- Sweeney J.J. & Burnham A.K., 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74(10), 1559–1570. https://doi.org/ 10.1306/0C9B251F-1710-11D7-8645000102C1865D.
- Tegelaar E.W. & Noble R.A., 1994. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromatography. Organic Geochemistry, 22(3–5), 543–574. https://doi. org/10.1016/0146-6380(94)90125-2.
- Ungerer P., 1990. State of the art of research in kinetic modelling of oil formation and expulsion. Organic Geochemistry, 16(1–3), 1–25. https://doi.org/10.1016/0146- 6380(90)90022-R.
- Vandenbroucke M., Behar F. & Rudkiewicz J.L., 1999. Kinetic modelling of petroleum formation and cracking: implications from the high pressure/high temperaturę Elgin Field (UK, North Sea). Organic Geochemistry, 30(9), 1105–1125. https://doi.org/10.1016/S0146-6380(99) 00089-3.
- Waples D.W., Kamata H. & Suizu M., 1992. The art of maturity modeling. Part 2: Alternative models and sensitivity analysis. AAPG Bulletin, 76(1), 47–66.
- Wood D.A., 2024. Kerogen kinetic distributions and simulations provide insights into petroleum transformation fraction (TF) profiles of organic-rich shales. Journal of Earth Science, 35(3), 747–757. https://doi.org/10.1007/ s12583-024-1981-0.
- Zhou Y. & Littke R., 1999. Numerical simulation of the thermal maturation, oil generation and migration in the Songliao Basin, Northeastern China. Marine and Petroleum Geology, 16(8), 771–792. https://doi.org/10.1016/ S0264-8172(99)00043-4.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac49aa83-0328-4bde-82c5-f0285e87d6db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.