PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High porosity fly ash/Ni/P composite produced by electroless deposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present study is to create a composite material possessing useful properties enabling the waste fly ash to be utilized. To obtain the final material, fly ash is subjected to separation by size and density. The innovative approach to making the composite material is the use of chemical nickel deposition by which the free particles are bonded as a solid body. Deposition of nickel was carried out by two stages: first Ni-coating of the particles and second – bonding of the particles by nickel deposition. Structure of this material is near to syntactic foam. Some properties of the obtained material as a porosity, density, and permeability with regard to its application have been investigated.
Rocznik
Strony
369--373
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, bul. James Boucher 1, 1164 Sofia, Bulgaria
  • Institute of Metal Science, Equipment and Technologies with Hydroaerodynamics Centre “Acad. Angel Balevski”, Bulgarian Academy of Sciences, 67 Shipchenski prohod, 1574 Sofia, Bulgaria
autor
  • Institute of Metal Science, Equipment and Technologies with Hydroaerodynamics Centre “Acad. Angel Balevski”, Bulgarian Academy of Sciences, 67 Shipchenski prohod, 1574 Sofia, Bulgaria
autor
  • Sofia University “St. Kliment Ohridski”, Faculty of Chemistry and Pharmacy, bul. James Boucher 1, 1164 Sofia, Bulgaria
  • Institute of Metal Science, Equipment and Technologies with Hydroaerodynamics Centre “Acad. Angel Balevski”, Bulgarian Academy of Sciences, 67 Shipchenski prohod, 1574 Sofia, Bulgaria
Bibliografia
  • 1. Weise J., O. Yezerska, M. Busse, M. Haesche, V. Zanetti-Bueckmann, M. Schmitt. 2007. “Production and properties of micro-porous glas bubble zinc and aluminium composites”. Materialwissenschaft und Werkstofftechnik 38 (11) : 901−906.
  • 2. Peroni L., M. Scapin, M. Avalle, J. Weise, D. Lehmhus. 2012. “Dynamic mechanical behavior of syntactic iron foams with glass microspheres”. Materials Science and Engineering A 552 (30 August 2012) : 364−375.
  • 3. Orbulov I.N., K. Májlinger. 2012. “Microstructure of metal matrix composites reinforced by ceramic microballoons”. Materiali in Technologije / Materials and Technology 46 (4) : 375−382.
  • 4. Lehmhus D., J. Weise, J. Baumeister, L. Peroni, M. Scapin, C. Fichera, M. Avalle, M. Busse. 2014. “Quasistatic and dynamic mechanical performance of glass microsphere- and cenosphere-based 316L syntactic foams”. 8th International Conference on Porous Metals and Metallic Foams, Metfoam 2013. Procedia Materials Science 4 : 383−387.
  • 5. Rohatgi P.K., J.K. Kim, N. Gupta, S. Alaraj, A. Daoud. 2006. “Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique”. Composites: Part A: Applied Science and Manufacturing 37 3 : 430−437.
  • 6. Rohatgi P.K., N. Gupta, S. Alaraj. 2016. “Thermal expansion of aluminum–fly ash cenosphere composites synthesized by pressure infiltration technique”. Journal of Composite Materials 40 (13) : 1163−1174.
  • 7. Májlinger K., I.N. Orbulov. 2014. “Characteristic compressive properties of hybrid metal matrix syntactic foams”. Materials Science & Engineering A 606 : 248−256.
  • 8. Orbulov I.N. 2012. “Compressive properties of aluminium matrix syntactic foams”. Materials Science and Engineering A 555 : 52−56.
  • 9. Sirikingkaew S., N. Supakata. 2017. “Utilization of fly ash and concrete residue in the production of geopolymer bricks”. Journal of Green Building 12 (1) : 63−77. DOI 10.3992/1552-6100.12.1.63.
  • 10. Li D., K. Goodwin, C.L. Yang. 2008. “Electroless copper deposition on aluminum-seeded ABS plastics”. Journal of Materials Science 43 (22) : 7121−7131.
  • 11. Sudagar J., J. Lian, W. Sha. 2013. “Electroless nickel, alloy, composite and nano coatings – A critical review”. Journal of Alloys and Compounds 571 (15 September 2013) : 183−204.
  • 12. Hari Krishnan K., S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, P.M. Kavimani. 2006. “An overall aspect of electroless Ni-P depositions – A review article”. Metallurgical and Materials Transactions A 37 (6) : 1917−1926.
  • 13. Balaraju J.N., T.S.N. Sankara Narayanan, S.K. Seshadri. 2003. “Electroless Ni–P composite coatings”. Journal of Applied Electrochemistry 33 (9) : 807−816.
  • 14. Brdichka R. 1965. Physical Chemistry. Sofia: Technica, p. 276.
  • 15. Joos G. 1932, 1934, 1939, 1942, 1943, 1945, 1950, 1954, 1954, 1956, 1959, 1964, 1964, 1964, 1965, 1980. Lehrbuch der theoretischen Physik, Akademische Verlagsgesellschaft; Russian Translation from 10th edition (1956), M., 1963, v. 1, p. 217−219.
  • 16. Kirby B.J. 2010. Micro- and nanoscale fluid mechanics: Transport in microfluidic devices. Cambridge University Press, p. 46−47.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac439092-5e02-47e2-bfc3-ecf332825b7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.