Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Acid mine drainage (AMD), which is also known as acid rock drainage (ARD), can cause serious environmental pollution, especially for surrounding aquatic and terrestrial ecosystems due toits low pH, high metal and sulfate concentration. Acid mine drainage is an urgent environmental problem for the worldwide ore mining industry. In this paper, we demonstrated that hydrophobic films can inhibit the oxidation of pyrite-bearing tailings to achieve the control of at-source AMD. The results of chemical leaching testing showed that the hydrophobic films formed by linoleic acid can suppress the oxidation of pyrite-bearing tailings and reduce the AMD production. In addition, the presence of hydrophobic films of linoleic acid on the surface of pyrite-bearing tailings was confirmed by the results from Fourier transform infrared (FTIR) analyses and scanning electron microscopy with energy dispersive spectrometry (SEM / EDS).
Słowa kluczowe
Rocznik
Tom
Strony
1132--1140
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wz.
Twórcy
autor
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
autor
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
autor
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
Bibliografia
- ADIANSYAH, J. S., ROSANO, M., VINK, S., KEIR, G., 2015. A framework for a sustainable approach to mine tailings management: disposal strategies. Journal of Cleaner Production. 108, 1050-1062.
- AGUIAR, A. O., ANDRADE, L. H., RICCI,B. C., PIRES, W. L., MIRANDA, G. A., AMARAL, M. C. S., 2016. Gold acid mine drainage treatment by membrane separation processes: An evaluation of the main operational conditions. Separation and Purification Technology. 170, 360-369.
- BASTRZYK, A., POLOWCZYK, I., SADOWSKI, Z., SIKORA, A., 2011. Relationship between properties of oil/water emulsion and agglomeration of carbonate minerals. Sep. Purif. Technol. 77, 325-330.
- CHEN, Y. W., LI, Y. R., CAI, M. F., BELZILE, N., DANG, Z., 2006. Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Minerals Engineering. 19(1), 19-27.
- DEMERS, I., BOUDA, M., MBONIMPA, M., BENZAAZOUA, M., BOIS, D., GAGNON, M., 2015. Valorization of acid mine drainage treatment sludge as remediation component to control acid generation from mine wastes, part 2: Field experimentation. Minerals Engineering. 76,117-125.
- DEMERS, I., MBONIMPA, M., BENZAAZOUA, M., BOUDA, M., AWOH, S., LORTIE, S., GAGNON, M., 2017. Use of acid mine drainage treatment sludge by combination with a natural soil as an oxygen barrier cover for mine waste reclamation: Laboratory column tests and intermediate scale field tests. Minerals Engineering. 107, 43-52.
- DRZYMALA, J., 2007. Mineral processing. Foundations of theory and practice of minerallurgy. Ofic. Wyd. PWr, Wroclaw, Poland.
- ELSETINOW, A. R., SCHOONEN, M. A. A., STRONGIN, D. R., 2001. Aqueous Geochemical and Surface Science Investigation of the Effect of Phosphate on Pyrite Oxidation. Environmental Science & Technology, 35(11), 2252-2257.
- EVANGELOU, V. P., 2001. Pyrite microencapsulation technologies: Principles and potential field application. Ecological Engineering. 17(2-3), 165-178.
- GALHARDI, J. A., BONOTTO, D. M., 2016. Hydrogeochemical features of surface water and groundwater contaminated with acid mine drainage (AMD) in coal mining areas: a case study in southern Brazil. Environmental Science and Pollution Research. 23(18), 18911-18927.
- GEORGOPOULOU, Z. J., FYTAS, K., SOTO, H., EVANGELOU, B., 1996. Feasibility and cost of creating an iron-phosphate coating on pyrrhotite to prevent oxidation. Environmental Geology. 28(2), 61-69.
- HUMINICKI, D. M. C., RIMSTIDT, J. D., 2009. Iron oxyhydroxide coating of pyrite for acid mine drainage control. Applied Geochemistry. 24(9), 1626-1634.
- JOHNSON, D. B., HALLBERG, K. B., 2005. Acid mine drainage remediation options: a review. Science of The Total Environment. 338(1-2), 3-14.
- KANG, C. U., JEON, B. H., PARK, S. S., KANG, J. S., KIM, K. H., KIM, D. K., CHOI, U. K., KIM, S. J., 2016. Inhibition of pyrite oxidation by surface coating: a long-term field study. Environmental Geochemistry and Health. 38(5), 1137-1146.
- KARGBO, D. M., CHATTERJEE, S., 2005. Stability of Silicate Coatings on Pyrite Surfaces in a Low pH Environment. Journal of Environmental Engineering. 131(9), 1340-1349.
- KEFENI, K. K., MSAGATI, T. A. M., MAMBA, B. B., 2017. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production. 151, 475-493.
- LAN, Y., HUANG, X., DENG, B., 2002. Suppression of Pyrite Oxidation by Iron 8-Hydroxyquinoline. Archives of Environmental Contamination and Toxicology. 43(2), 168-174.
- LIU, Y., DANG, Z., XU, Y., XU, T. Y., 2013. Pyrite Passivation by Triethylenetetramine: An Electrochemical Study. Journal of Analytical Methods in Chemistry. 1-8.
- LU, J. M., ALAKANGAS, L., WANHAINEN, C., 2014. Metal mobilization under alkaline conditions in ash-covered tailings. Journal of Environmental Management. 139, 38-49.
- LUPTAKOVA, A., BALINTOVA, M., JENCAROVA, J., MACINGOVA, E., PRASCAKOVA, M., 2010. Metals recovery from acid mine drainage. Nova Biotechnologica. 10(1), 23-32.
- NICHOLSON, R. V., GILLHAM, R. W., CHERRY, J. A., REARDON, E. J., 1989. Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers. Canadian Geotechnical Journal. 26(1), 1-8.
- NISHIIKE, T., KONDO, S., YAMAMOTO, T., SHIGEEDA,A., YAMAMOTO, Y., TAKAMURA, H., MATOBA, T., 1997. Effects of Metal Ions and pH on the Stability of Linoleic Acid Hydroperoxide in the Water Phase. Bioscience, Biotechnology, and Biochemistry. 61(12), 1973-1976
- PAN, H. J., ZHOU, G. H., CHENG, Z. Z., YANG, R., HE, L., ZENG, D. M., SUN, B. B., 2014. Advances in geochemical survey of mine tailings project in China. Journal of Geochemical Exploration. 139, 193-200.
- PARBHAKAR-FOX, A., LOTTERMOSER, B. G., 2015. A critical review of acid rock drainage prediction methods and practices.Minerals Engineering. 82, 107-124.
- PEPPAS, A., KOMNITSAS, K., HALIKIA, I., 2000. Use of organic covers for acid mine drainage control. Minerals Engineering. 13(5), 563-574.
- SARMIENTO, A. M., DELVALLS, A., NIETO, J. M., SALAMANCA, M. J., CARABALLO, M. A., 2011. Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Science of The Total Environment. 409(22), 4763-4771.
- SHEN, J. H., 2010. Raman spectroscopy analysis of the oxidation process of linoleic Acid. Ph.D. Dissertation, Zhengzhou University, China.
- SINGER, P. C., STUMM, W., 1970. Acidic mine drainage: the rate-determining step. Science. 167(3921), 1121-1123.
- SMART, R. S. C., MILLER, S. D., STEWART, W. S., RUSDINAR, Y., SCHUMANN, R. E., KAWASHIMA, N., LI, J., 2010. In situ calcite formation in limestone-saturated water leaching of acid rock waste. Science of The Total Environment. 408(16), 3392-3402.
- VILLAIN, L., ALAKANGAS, L., ÖHLANDER, B., 2013. The effects of backfilling and sealing the waste rock on water quality at the Kimhedenopen-pit mine, northern Sweden. Journal of Geochemical Exploration. 134, 99-110.
- YIN, G. Z., LI, G. Z., WEI, Z. A., WAN, L., SHUI, G. H., JING, X. F., 2011. Stability analysis of a copper tailings dam via laboratory model tests: A Chinese case study. Minerals Engineering. 24(2), 122-130.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac4354e8-1059-4748-a603-51d5b1c598cf