
JAISCR, 2017, Vol. 7, No. 3, pp. 155

PARALLEL MCNN (PMCNN) WITH APPLICATION TO
PROTOTYPE SELECTION ON LARGE AND STREAMING

DATA

V. Susheela Devi and Lakhpat Meena

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

Submitted: 1st January 2016; accepted: 4th July 2016

Abstract

The Modified Condensed Nearest Neighbour (MCNN) algorithm for prototype selection
is order-independent, unlike the Condensed Nearest Neighbour (CNN) algorithm. Though
MCNN gives better performance, the time requirement is much higher than for CNN. To
mitigate this, we propose a distributed approach called Parallel MCNN (pMCNN) which
cuts down the time drastically while maintaining good performance. We have proposed
two incremental algorithms using MCNN to carry out prototype selection on large and
streaming data. The results of these algorithms using MCNN and pMCNN have been
compared with an existing algorithm for streaming data.
Keywords: prototype selection, one-pass algorithm, streaming data, distributed algo-
rithm.

1 Introduction

Prototype selection is the process of finding the
subset of the training dataset which gives the best
results when used instead of the training set for
classification [2]. If we have a training dataset
X=(x1,θ1),(x2,θ2), ...,(xn,θn), prototype selection
choses m examples from X where m < n. Proto-
type selection is used when the training dataset is
very large and/or has a large number of features. To
obtain saving in space and time, m patterns are used
instead of n. This may lead to some reduction in the
performance of the classifier. If the training dataset
has redundant patterns or outliers, then the reduced
set may give better performance than the complete
training dataset. This paper uses the Modified Con-
densed Nearest Neighbour (MCNN) [6] algorithm
to carry out prototype selection. This is an order in-
dependent algorithm (unlike the Condensed Near-
est Neighbour algorithm) which gives good perfor-

mance. A parallel implementation of MCNN called
pMCNN has been developed to mitigate the time
complexity of MCNN on large datasets. We have
applied this technique to carry out prototype selec-
tion on large and streaming data.

In this work, we propose an incremental proto-
type set selection algorithm for streaming data and
large data sets, where prototypes are added in an
incremental fashion to the condensed set. The algo-
rithm produces a training set consistent subset for
classification, which gives good results. After using
a sequential approach with MCNN, we have used a
distributed approach using a parallel implementa-
tion of MCNN called pMCNN.

The Condensed nearest neighbor rule (CNN
rule) [4] is the first and the most popular prototype
selection algorithm. CNN first puts one point from
the training set T into a condensed set S. The other
points are considered one at a time and if it does not

 10.1515/jaiscr-2017-0011
 – 169

PARALLEL MCNN (PMCNN) WITH APPLICATION TO
PROTOTYPE SELECTION ON LARGE AND STREAMING

DATA

V. Susheela Devi and Lakhpat Meena

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

Submitted: 1st January 2016; accepted: 4th July 2016

Abstract

The Modified Condensed Nearest Neighbour (MCNN) algorithm for prototype selection
is order-independent, unlike the Condensed Nearest Neighbour (CNN) algorithm. Though
MCNN gives better performance, the time requirement is much higher than for CNN. To
mitigate this, we propose a distributed approach called Parallel MCNN (pMCNN) which
cuts down the time drastically while maintaining good performance. We have proposed
two incremental algorithms using MCNN to carry out prototype selection on large and
streaming data. The results of these algorithms using MCNN and pMCNN have been
compared with an existing algorithm for streaming data.
Keywords: prototype selection, one-pass algorithm, streaming data, distributed algo-
rithm.

1 Introduction

Prototype selection is the process of finding the
subset of the training dataset which gives the best
results when used instead of the training set for
classification [2]. If we have a training dataset
X=(x1,θ1),(x2,θ2), ...,(xn,θn), prototype selection
choses m examples from X where m < n. Proto-
type selection is used when the training dataset is
very large and/or has a large number of features. To
obtain saving in space and time, m patterns are used
instead of n. This may lead to some reduction in the
performance of the classifier. If the training dataset
has redundant patterns or outliers, then the reduced
set may give better performance than the complete
training dataset. This paper uses the Modified Con-
densed Nearest Neighbour (MCNN) [6] algorithm
to carry out prototype selection. This is an order in-
dependent algorithm (unlike the Condensed Near-
est Neighbour algorithm) which gives good perfor-

mance. A parallel implementation of MCNN called
pMCNN has been developed to mitigate the time
complexity of MCNN on large datasets. We have
applied this technique to carry out prototype selec-
tion on large and streaming data.

In this work, we propose an incremental proto-
type set selection algorithm for streaming data and
large data sets, where prototypes are added in an
incremental fashion to the condensed set. The algo-
rithm produces a training set consistent subset for
classification, which gives good results. After using
a sequential approach with MCNN, we have used a
distributed approach using a parallel implementa-
tion of MCNN called pMCNN.

The Condensed nearest neighbor rule (CNN
rule) [4] is the first and the most popular prototype
selection algorithm. CNN first puts one point from
the training set T into a condensed set S. The other
points are considered one at a time and if it does not

Unauthenticated
Download Date | 1/27/18 3:10 PM

156 V. Susheela Devi and Lakhpat Meena

have the same class as its nearest neighbor in C, it
is added to C. This process is repeated a number
of times on T till C correctly classifies all the pat-
terns in T . CNN is order-dependent as the points
in the condensed set S depends on selection of ini-
tial sample point and order in which data is pre-
sented to the algorithm. The Modified CNN algo-
rithm (MCNN) first includes a representative data
point from the patterns in T for each class. This
may be the medoid of all the points in the dataset.
Any other representative pattern can also be used.
In each step, T is classified using C. A representa-
tive point is found for the misclassified points from
each class and added to C. This is repeated till C
classifies all the points in T correctly. Unlike CNN,
MCNN is order-independent which means it com-
putes the same condensed set independently of the
order of data points in the training set. The Fast
CNN rule[7] computes representative data points
using the Voronoi cell. The Voronoi cell of point
p ∈ S set is denoted by

Vor(p,S,T) = {q ∈ T |∀p, ∈ S,d(p,q)≤ d(p,,q)},
(1)

which means it is the set of all points of T that are
closer to p than any other point p′ in set S. Voronoi
enemies of p ∈ S is denoted by

Voren(p,S,T) = {q ∈Vor(p,S,T)|l(q) ̸= l(p)}.
(2)

Like MCNN, condensed set S is initialized with
the centroid of each class. During each itera-
tion, for each point p ∈ S, representative data point
in Voren(p,S,T) is selected and inserted to con-
densed set S. The representative data point of p in
Voren(p,S,T) is denoted as

rep(p,Voren(p,S,T)) = nn(p,Voren(p,S,T)),
(3)

which means nearest neighbor of point p is its
Voronoi enemies cell. The FCNN algorithm termi-
nates when for each data point p ∈ S, Voren(p,S,T)
is empty. Like MCNN, FCNN rule is also order-
independent. The FCNN rule requires more itera-
tions than CNN to compute training set consistent
subset but less than the MCNN rule. They also
proposed a distributed approach of this algorithm
for large data sets[8]. The Structural Risk Mini-
mization using the NN rule (NNSRM)[9] is costly
as its complexity is O(n3). The Reduced nearest
neighbor (RNN) rule [5] starts with the condensed

set Cr having all the patterns in C as obtained by
CNN. Every instance in Cr is removed if this dele-
tion does not cause a misclassification of another
instance in T . A set cover optimization problem
is solved in [15] to find the prototypes. A fuzzy
rough approach is used in [17] to carry out pro-
totype selection. Multi-objective optimization and
partitioning is used to carry out prototype selection
in [18]. The various methods for prototype selec-
tion have been described and classified in [13]. [16]
is a survey paper of prototype selection algorithms
for kNN classification.

Streaming and large data sets have large space
complexity and time complexity as huge data sets
have to be processed. For this reason, prototype se-
lection algorithms for large datasets and for stream-
ing data should run in linear time and should be
basically incremental algorithms. In [14], the algo-
rithm WECU has been proposed which is an ensem-
ble classifier used for classification of data streams.
Each incoming chunk of data is used to induce an
ensemble classifier. An adaptive Nearest Neigh-
bor classification algorithm for data streams is pro-
posed in [10]. The authors propose an incremental
adaptive nearest neighbor classifier based on multi-
resolution data representation to compute nearest
neighbors of a point. Instance-based learning on
data streams is used in [11]. An instance is sim-
ply a pattern or data with a class label. Let χ de-
note the instance space, where instance corresponds
to the description x of an object. A labelled in-
stance is denoted as ⟨x,λx⟩, where λx is the label of
x. The method uses subset D of complete instance
space χ and ⟨xi,λxi⟩,1 ≤ i ≤ n = |D|. Then D is
considered as the training set for operations on the
given query. So, for a given new query x0, it uses
k-nearest neighbor algorithm on set D to estimate
class label λx0 of x0. The algorithm uses some dele-
tion strategies to update D, whenever adding new
instances leads to the upper bound being exceeded.
A volume prototype selection algorithm for stream-
ing data [12] uses the acceptance region to update
prototypes. If the new sample data point falls into
the acceptance region, then this point is added to up-
date the prototypes. One sample point can be used
to update more than one prototype. Finally, from Ĺ
prototypes, it selects greedily L prototypes, where
L ≤ Ĺ. The algorithm works in two phases. The
first phase is used to compute the initial prototypes.
The initial prototypes are computed according to M

Unauthenticated
Download Date | 1/27/18 3:10 PM

157V. Susheela Devi and Lakhpat Meena

have the same class as its nearest neighbor in C, it
is added to C. This process is repeated a number
of times on T till C correctly classifies all the pat-
terns in T . CNN is order-dependent as the points
in the condensed set S depends on selection of ini-
tial sample point and order in which data is pre-
sented to the algorithm. The Modified CNN algo-
rithm (MCNN) first includes a representative data
point from the patterns in T for each class. This
may be the medoid of all the points in the dataset.
Any other representative pattern can also be used.
In each step, T is classified using C. A representa-
tive point is found for the misclassified points from
each class and added to C. This is repeated till C
classifies all the points in T correctly. Unlike CNN,
MCNN is order-independent which means it com-
putes the same condensed set independently of the
order of data points in the training set. The Fast
CNN rule[7] computes representative data points
using the Voronoi cell. The Voronoi cell of point
p ∈ S set is denoted by

Vor(p,S,T) = {q ∈ T |∀p, ∈ S,d(p,q)≤ d(p,,q)},
(1)

which means it is the set of all points of T that are
closer to p than any other point p′ in set S. Voronoi
enemies of p ∈ S is denoted by

Voren(p,S,T) = {q ∈Vor(p,S,T)|l(q) ̸= l(p)}.
(2)

Like MCNN, condensed set S is initialized with
the centroid of each class. During each itera-
tion, for each point p ∈ S, representative data point
in Voren(p,S,T) is selected and inserted to con-
densed set S. The representative data point of p in
Voren(p,S,T) is denoted as

rep(p,Voren(p,S,T)) = nn(p,Voren(p,S,T)),
(3)

which means nearest neighbor of point p is its
Voronoi enemies cell. The FCNN algorithm termi-
nates when for each data point p ∈ S, Voren(p,S,T)
is empty. Like MCNN, FCNN rule is also order-
independent. The FCNN rule requires more itera-
tions than CNN to compute training set consistent
subset but less than the MCNN rule. They also
proposed a distributed approach of this algorithm
for large data sets[8]. The Structural Risk Mini-
mization using the NN rule (NNSRM)[9] is costly
as its complexity is O(n3). The Reduced nearest
neighbor (RNN) rule [5] starts with the condensed

set Cr having all the patterns in C as obtained by
CNN. Every instance in Cr is removed if this dele-
tion does not cause a misclassification of another
instance in T . A set cover optimization problem
is solved in [15] to find the prototypes. A fuzzy
rough approach is used in [17] to carry out pro-
totype selection. Multi-objective optimization and
partitioning is used to carry out prototype selection
in [18]. The various methods for prototype selec-
tion have been described and classified in [13]. [16]
is a survey paper of prototype selection algorithms
for kNN classification.

Streaming and large data sets have large space
complexity and time complexity as huge data sets
have to be processed. For this reason, prototype se-
lection algorithms for large datasets and for stream-
ing data should run in linear time and should be
basically incremental algorithms. In [14], the algo-
rithm WECU has been proposed which is an ensem-
ble classifier used for classification of data streams.
Each incoming chunk of data is used to induce an
ensemble classifier. An adaptive Nearest Neigh-
bor classification algorithm for data streams is pro-
posed in [10]. The authors propose an incremental
adaptive nearest neighbor classifier based on multi-
resolution data representation to compute nearest
neighbors of a point. Instance-based learning on
data streams is used in [11]. An instance is sim-
ply a pattern or data with a class label. Let χ de-
note the instance space, where instance corresponds
to the description x of an object. A labelled in-
stance is denoted as ⟨x,λx⟩, where λx is the label of
x. The method uses subset D of complete instance
space χ and ⟨xi,λxi⟩,1 ≤ i ≤ n = |D|. Then D is
considered as the training set for operations on the
given query. So, for a given new query x0, it uses
k-nearest neighbor algorithm on set D to estimate
class label λx0 of x0. The algorithm uses some dele-
tion strategies to update D, whenever adding new
instances leads to the upper bound being exceeded.
A volume prototype selection algorithm for stream-
ing data [12] uses the acceptance region to update
prototypes. If the new sample data point falls into
the acceptance region, then this point is added to up-
date the prototypes. One sample point can be used
to update more than one prototype. Finally, from Ĺ
prototypes, it selects greedily L prototypes, where
L ≤ Ĺ. The algorithm works in two phases. The
first phase is used to compute the initial prototypes.
The initial prototypes are computed according to M

PARALLEL MCNN (PMCNN) WITH . . .

times random permutation of data samples. This
phase requires multiple scans of initial N data sam-
ples to get initial condensed set. The second phase
requires only one-time scan of remaining data sam-
ples. By taking random permutation of samples,
we can see that initial prototypes depend on differ-
ent order of samples. So, initial prototypes may be
different each time we apply this algorithm on the
same data samples.

In this paper, prototype selection is carried out
to get the condensed set for streaming data sets and
large data sets. When there is streaming labeled
data, at any instance, we have a condensed set de-
pending on the data which has come in till now.
This condensed set can be used to classify a new
pattern, if it is required to do so at that point. As the
labeled data keeps coming, the condensed set has
to be modified to reflect the data coming in. This
should be done in an incremental manner without
having to run the entire prototype selection algo-
rithm again on the entire training set. Also, as the
data stream comes in, stays for some time and goes
away, we can sample the data only once and we
need a one-pass algorithm to incrementally obtain
the condensed set.

Carrying out prototype selection for streaming
data is an interesting and challenging problem. Our
algorithm is a one-pass algorithm and computa-
tion time is linear. Unlike volume prototype se-
lection, we do point prototype selection. Our algo-
rithm can be used for both streaming data and large
datasets. In the case of large datasets, our method
helps to reduce the space and time complexity. Af-
ter discussing this algorithm, it has been applied to
streaming and large datasets using the serial MCNN
and the distributed MCNN (pMCNN).

This paper is organized as follows. In Section
2, the methodology used in this paper for stream-
ing and large datasets is explained. In Section 3,
we explain the distributed approach of MCNN i.e.
pMCNN. Section 4 gives the results of using our
streaming algorithm to obtain prototypes using the
MCNN and the pMCNN algorithms. Section 5
gives the conclusion.

2 Methodology

This algorithm [1] is a modification of the
MCNN algorithm for prototype selection which

takes into account large and streaming data. The al-
gorithm first starts with a small amout of data points
m where m << n. The initial condensed set is ob-
tained by applying MCNN algorithm on these m
patterns. As the data comes in as a stream, the data
is handled one at a time, incrementally updating the
condensed set using MCNN. A one pass algorithm
is proposed by us for handling the streaming data.

2.1 MCNN Rule

MCNN rule partitions the region of each class
into non-overlapping Vornoi regions. Each region
has a representative pattern in the condensed set.
It computes prototype samples in an incremental
manner. MCNN rule starts with taking represen-
tative data points of each class of the training set
into the condensed set. We can use different ap-
proaches to compute representative data point of
a class. When we have Gaussian distribution, we
use the centroid as the representative data point of
a class. As described in Section 1, MCNN rule is
order-independent. It always computes the same
condensed set with any order of data points in the
data set. We use MCNN with a small subset of
stream points to get the initial condensed set.

Algorithm 1 Algorithm of MCNN Rule for initial
phase

Input: D= training set for first phase, cond = ϕ.
1. Initialize typical = ϕ, St = D.
2. Compute representative point for each class of
St and add to typical.
3. Set Sm = ϕ, Sc = ϕ.
4. Classify St with typical set.
5. Add misclassified data points to Sm and cor-
rectly classified to Sc.
if Sm ̸= ϕ then

Set St = Sc.
Set typical = ϕ.
Go to step 3.

end if
6. Set cond = cond ∪ typical.
7. Set Sm = ϕ, Sc = ϕ.
8. Classify training set D with cond.
9. Add misclassified data points to Sm and cor-
rectly classified to Sc.
if Sm ̸= ϕ then

Set St = Sm.
Set typical = ϕ.
Go to step 3.

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

Unauthenticated
Download Date | 1/27/18 3:10 PM

158 V. Susheela Devi and Lakhpat Meena

end if
10. Stop and cond is final condensed set.

Algorithm 1 gives the algorithm for MCNN.
Steps 3-6 iteratively computes representative sam-
ples for each class in the initial training set D. It
uses two sets Sm and Sc, where it adds misclassi-
fied data points to set Sm and classified data points
to set Sc. Steps 7-9 are used for checking classifica-
tion of the training set using the current condensed
set cond. The algorithm computes centroids as rep-
resentative samples for each class of the data set.
It uses nearest-neighbor rule to classify data sam-
ples using the condensed set. The initial training
set D is much smaller in size compared to train-
ing set T. Here T is a data stream or big data set,
whereas D is a small subset of T. The algorithm ter-
minates when all data points of the training set D are
correctly classified with the reduced prototype set
cond which is the final condensed set. In each iter-
ation, the algorithm incrementally adds prototypes
to cond set.

The final condensed set of MCNN (just like
for CNN) correctly classifies the complete training
dataset. The condensed set, therefore, gives 100%
accuracy on the training set.The MCNN algorithm
taken from [6], is reproduced in Algorithm 1 for
easy reference.

2.2 Prototype Selection on Streaming Data
Instances

This phase of the algorithm deals with the
streaming data coming one at a time. It requires
only one-time scan of incoming data samples. In
this phase, two methods have been used for updat-
ing the condensed set. In Method 1, data points
which are misclassified by the condensed set are
added to the condensed set. In Method 2, misclas-
sified samples are collected together and every now
and then, MCNN is run on these samples to get a
condensed set which is added on to the original con-
densed set.

2.3 Algorithm

2.3.1 Method 1:

The algorithm computes the condensed set in
two phases. The input for the first phase is a small
subset D of complete training set T. The final con-

densed set computed by the initial phase is used as
input in the second phase. The second phase is used
to carry prototype set selection on remaining data
points. In this phase, the algorithm considers each
incoming data sample and incrementally adds mis-
classified data samples to the current condensed set.

Algorithm 2 Method 1 for Prototype selection on
Streaming data set

Input: T = training set, cond = ϕ.
1. Initialize set D={(x1,c1),(x2,c2), . . . ,(xm,cm)}

dataset for first phase.
2. Initialize set R = T \D remaining data set.
3. Set cond = mcnn(D) .
4. Classify remaining data samples.
for all xi in R do

find neigh = nearest-neighbor(xi , cond) .
if label(xi) ̸= label(neigh) then

update cond by adding xi sample into cond.
end if

end for
5. Stop and cond is final condensed set.

It requires only one-pass to get the remaining
prototypes of the condensed set from the remaining
data stream. It will terminate after a full scan of the
training data set T. The algorithm of Method 1 is
shown in Algorithm 2. In this algorithm, the initial
subset of training set D is input to MCNN to com-
pute initial condensed set. R is the set containing all
remaining data samples after D. Let size of D be m,
which means it contains m initial data samples of
the data stream. So all remaining data samples xi,
where i > m, are data samples belonging to R. The
condensed set cond computed by MCNN rule and
R are used in the second phase of the algorithm.

In step 2, it creates the initial subset D of size m
and set R is the remaining data set. In step 3, the ini-
tial condensed set using MCNN rule is found. Step
4 is used to select prototypes from set R. When new
data sample comes, it finds its nearest-neighbor in
the current cond set. For all data samples, if class
label of data sample is different from the class label
of computed neighbor data point, then it is added
into cond. For streaming data, at any time, the con-
densed set existing at that point can be used for clas-
sification. For big data sets, it will terminate after a
full scan of training data set T . While more num-
ber of prototypes maybe addeded to the condensed
set when the streaming data is just starting, as more

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

Unauthenticated
Download Date | 1/27/18 3:10 PM

159V. Susheela Devi and Lakhpat Meena

end if
10. Stop and cond is final condensed set.

Algorithm 1 gives the algorithm for MCNN.
Steps 3-6 iteratively computes representative sam-
ples for each class in the initial training set D. It
uses two sets Sm and Sc, where it adds misclassi-
fied data points to set Sm and classified data points
to set Sc. Steps 7-9 are used for checking classifica-
tion of the training set using the current condensed
set cond. The algorithm computes centroids as rep-
resentative samples for each class of the data set.
It uses nearest-neighbor rule to classify data sam-
ples using the condensed set. The initial training
set D is much smaller in size compared to train-
ing set T. Here T is a data stream or big data set,
whereas D is a small subset of T. The algorithm ter-
minates when all data points of the training set D are
correctly classified with the reduced prototype set
cond which is the final condensed set. In each iter-
ation, the algorithm incrementally adds prototypes
to cond set.

The final condensed set of MCNN (just like
for CNN) correctly classifies the complete training
dataset. The condensed set, therefore, gives 100%
accuracy on the training set.The MCNN algorithm
taken from [6], is reproduced in Algorithm 1 for
easy reference.

2.2 Prototype Selection on Streaming Data
Instances

This phase of the algorithm deals with the
streaming data coming one at a time. It requires
only one-time scan of incoming data samples. In
this phase, two methods have been used for updat-
ing the condensed set. In Method 1, data points
which are misclassified by the condensed set are
added to the condensed set. In Method 2, misclas-
sified samples are collected together and every now
and then, MCNN is run on these samples to get a
condensed set which is added on to the original con-
densed set.

2.3 Algorithm

2.3.1 Method 1:

The algorithm computes the condensed set in
two phases. The input for the first phase is a small
subset D of complete training set T. The final con-

densed set computed by the initial phase is used as
input in the second phase. The second phase is used
to carry prototype set selection on remaining data
points. In this phase, the algorithm considers each
incoming data sample and incrementally adds mis-
classified data samples to the current condensed set.

Algorithm 2 Method 1 for Prototype selection on
Streaming data set

Input: T = training set, cond = ϕ.
1. Initialize set D={(x1,c1),(x2,c2), . . . ,(xm,cm)}

dataset for first phase.
2. Initialize set R = T \D remaining data set.
3. Set cond = mcnn(D) .
4. Classify remaining data samples.
for all xi in R do

find neigh = nearest-neighbor(xi , cond) .
if label(xi) ̸= label(neigh) then

update cond by adding xi sample into cond.
end if

end for
5. Stop and cond is final condensed set.

It requires only one-pass to get the remaining
prototypes of the condensed set from the remaining
data stream. It will terminate after a full scan of the
training data set T. The algorithm of Method 1 is
shown in Algorithm 2. In this algorithm, the initial
subset of training set D is input to MCNN to com-
pute initial condensed set. R is the set containing all
remaining data samples after D. Let size of D be m,
which means it contains m initial data samples of
the data stream. So all remaining data samples xi,
where i > m, are data samples belonging to R. The
condensed set cond computed by MCNN rule and
R are used in the second phase of the algorithm.

In step 2, it creates the initial subset D of size m
and set R is the remaining data set. In step 3, the ini-
tial condensed set using MCNN rule is found. Step
4 is used to select prototypes from set R. When new
data sample comes, it finds its nearest-neighbor in
the current cond set. For all data samples, if class
label of data sample is different from the class label
of computed neighbor data point, then it is added
into cond. For streaming data, at any time, the con-
densed set existing at that point can be used for clas-
sification. For big data sets, it will terminate after a
full scan of training data set T . While more num-
ber of prototypes maybe addeded to the condensed
set when the streaming data is just starting, as more

PARALLEL MCNN (PMCNN) WITH . . .

streaming data comes in, the number of new con-
densed patterns being added will decrease and will
be minimal after a while.

The algorithm also computes the condensed set
for big data sets in only a one-pass scan. The pro-
totype selection algorithms for static data sets are
used when we have the whole training data set.
The algorithm in this paper computes the condensed
set without the availability of the complete data set
at the same time. To use this algorithm on big
data sets, we can handle the big data set as a data
streams. In this approach, data samples of the big
data set will come as a sequence of data samples.
It can, therefore, be seen that it handles both mem-
ory management and execution time requirements
in the case of big data.

2.3.2 Method 2:

The algorithm described in this Section results
in a smaller condensed set than Method 1. On the
other hand, it takes more time to compute the final
condensed set than Method 1. As the data stream
comes in, if a data point is misclassified using cond
these are noted. Every now and then, MCNN is
used on this set of points. The condensed set that re-
sults is added on to cond. The algorithm of Method
2 is shown in Algorithm 3.

Algorithm 3 2 for Prototype selection on Stream-
ing data set

Input: T = training set, cond = ϕ.
1. Initialize set D={(x1,c1),(x2,c2), . . . ,(xm,cm)}

dataset for first phase.
2. Initialize set R = T \D remaining data set.
3. Set cond = mcnn(D) .
4. Set counter = 0.
5. Classify remaining data samples.
for all xi in R do

Increment counter by one.
Find neigh = nearest-neighbor(xi , cond) .
if label(xi) ̸= label(neigh) then

Update typical by adding xi sample into typ-
ical.

end if
if counter == L then

Set counter = 0.
cond = cond ∪ mcnn(typical).
typical = ϕ.

end if
end for

6. Stop and cond is final condensed set.

The main difference between Method 1 and
Method 2 occurs in step 5. In this algorithm, the
data coming in one by one is classified using cond
and if it is misclassified,it is stored in typical. When
L data points have been analyzed, the misclassi-
fied data points typical are used and MCNN algo-
rithm is run on these data points. The condensed set
which results is added on to cond. It classifies each
incoming data sample using the current condensed
set cond as in Method 1. For each data sample, if
it is misclassified, it is added to typical set and the
counter is incremented by one. When counter is
equal to L, it applies MCNN rule on set typical and
sets counter value to zero. It adds the condensed set
computed from typical to the current condensed set
and sets typical = ϕ. As in Method 1, it computes
the final condensed set after a full scan of the data
set.

The approach used in Method 2 computes a
smaller condensed set than Method 1 but it takes
more time to converge. The streaming data sets
have strict time constraints. Due to fast execution,
Method 1 gives better results for data streams to
achieve time constraints. If we want to get a smaller
size condensed set, Method 2 will give better re-
sults by computing a smaller condensed set cond.
We can use one of the methods according to our re-
quirements.

In streaming data sets, whenever we want to
have a condensed set for classification, we use the
current condensed set as the final condensed set.
During classification of the testing data set, the al-
gorithm will use this condensed set instead of the
complete training data set. It takes some time for
condensation but after condensation, classification
requires less time using the condensed set.

In this algorithm, as the streaming data keeps
coming, the number of misclassified samples comes
down and the number of prototypes being added to
the condensed set will decrease and finally will be
very minimal.

3 Distributed approach for proto-
type selection

The sequential algorithm gives efficient and
reduced condensed set but requirements increase

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

Unauthenticated
Download Date | 1/27/18 3:10 PM

160 V. Susheela Devi and Lakhpat Meena

when dataset size increases. In this part, we intro-
duce a distributed algorithm for prototype selection
to handle huge data sets and to achieve better time
and memory bounds.

The training set T is divided into equally sized
disjoint training set blocks on each node. Here node
is a processor of distributed architecture. Each node
has its own training set and computes the condensed
set of that training set in parallel.

Figure 1 shows the distributed architecture for
prototype selection. The training dataset is divided
on p nodes. Here c is the total number of classes in
the dataset. One node is the root node which han-
dles task division and gathers results from all other
nodes to get the final result. Here node id ‘0’ is the
root node.

Initially our algorithm finds the centroid of each
class using all nodes in parallel. As we explained
in our proposed sequential algorithm, initially the
condensed set starts by adding the centroid of each
class from the initial training set T ‘ into this con-
densed set.

The algorithm 4 is used to compute the con-
densed set from the initial training set with the dis-
tributed approach. In step 1, Si[j] indicates sum of
all elements of class label j on node id i. T i[j] in-
dicates number of elements of class label j on node
id i. After calculating Si[j] and T i[j], all nodes send
both variables to root node.

In step 2, the root node gathers all data from
different nodes and computes the center point of
each class using both these variables. The root node
computes S[j] and T [j] for each class label j. Here
S[j] is the total sum of all elements of class j in the
initial training set. T [j] represents the total number
of elements of class j. It then finds c[j] which is the
center point for every class j. The root node does
all this computation and broadcasts the result to all
nodes.

In step 3, all nodes have the center point of each
class. In this step, all nodes compute the local cen-
troid Ci[j] in their own training set block. Here local
centroid point Ci[j] is the nearest neighbor of center
point c[j] in class j in the local training set block T .

In step 4, the root node computes the global cen-
troid point of each class. In this step, it assigns the
nearest neighbor of center point c[j] among all lo-

cal centroid points Ci[j] as the global centroid point
for class label j. The algorithm adds all global cen-
troid points of each class in the condensed set ∆S
and broadcasts ∆S to all nodes. All nodes will start
with this condensed set ∆S.

In step 5, ∆S is added to the set ∆Si at all nodes (
for node with id i, its local condensed set is denoted
by ∆Si).

In step 6, for each node, initial training set block
is classified with the condensed set ∆Si. All mis-
classified data points are added to set typical . If
set typical is not empty then apply step 1-5 again
on the typical set to compute prototypes from this
set.

In step 7, the root node collects ∆Si of every
node i and merges them into the condensed set S.
The condensed set S is the condensed set computed
from the initial training set. The root node broad-
casts the condensed set S to all nodes. The con-
densed set computed by distributed approach for
initial training set is the same as the condensed set
computed by our sequential Method 1.

In algorithm 5, for the remaining incoming data
points, on each node, the data points are classi-
fied with condensed set S and the misclassified data
points are added to the condensed set Si. In the
streaming data set, whenever we want to have a con-
densed set for classification, it will merge all the
condensed sets Si into the final condensed set S on
the root node. During classification of test data, the
algorithm will use this condensed set instead of the
complete training data set.

Table 2. Datasets used in experiments

Dataset No. of
Sam-
ples

No. of
fea-
tures

No. of
classes

Optical dig. rec. 5,620 64 10
Pen dig. rec. 10,992 16 10
Letter image rec. 20,000 16 26
Gisette 15,300 5000 2
Forrest cover type 581,012 54 7

Unauthenticated
Download Date | 1/27/18 3:10 PM

161V. Susheela Devi and Lakhpat Meena

when dataset size increases. In this part, we intro-
duce a distributed algorithm for prototype selection
to handle huge data sets and to achieve better time
and memory bounds.

The training set T is divided into equally sized
disjoint training set blocks on each node. Here node
is a processor of distributed architecture. Each node
has its own training set and computes the condensed
set of that training set in parallel.

Figure 1 shows the distributed architecture for
prototype selection. The training dataset is divided
on p nodes. Here c is the total number of classes in
the dataset. One node is the root node which han-
dles task division and gathers results from all other
nodes to get the final result. Here node id ‘0’ is the
root node.

Initially our algorithm finds the centroid of each
class using all nodes in parallel. As we explained
in our proposed sequential algorithm, initially the
condensed set starts by adding the centroid of each
class from the initial training set T ‘ into this con-
densed set.

The algorithm 4 is used to compute the con-
densed set from the initial training set with the dis-
tributed approach. In step 1, Si[j] indicates sum of
all elements of class label j on node id i. T i[j] in-
dicates number of elements of class label j on node
id i. After calculating Si[j] and T i[j], all nodes send
both variables to root node.

In step 2, the root node gathers all data from
different nodes and computes the center point of
each class using both these variables. The root node
computes S[j] and T [j] for each class label j. Here
S[j] is the total sum of all elements of class j in the
initial training set. T [j] represents the total number
of elements of class j. It then finds c[j] which is the
center point for every class j. The root node does
all this computation and broadcasts the result to all
nodes.

In step 3, all nodes have the center point of each
class. In this step, all nodes compute the local cen-
troid Ci[j] in their own training set block. Here local
centroid point Ci[j] is the nearest neighbor of center
point c[j] in class j in the local training set block T .

In step 4, the root node computes the global cen-
troid point of each class. In this step, it assigns the
nearest neighbor of center point c[j] among all lo-

cal centroid points Ci[j] as the global centroid point
for class label j. The algorithm adds all global cen-
troid points of each class in the condensed set ∆S
and broadcasts ∆S to all nodes. All nodes will start
with this condensed set ∆S.

In step 5, ∆S is added to the set ∆Si at all nodes (
for node with id i, its local condensed set is denoted
by ∆Si).

In step 6, for each node, initial training set block
is classified with the condensed set ∆Si. All mis-
classified data points are added to set typical . If
set typical is not empty then apply step 1-5 again
on the typical set to compute prototypes from this
set.

In step 7, the root node collects ∆Si of every
node i and merges them into the condensed set S.
The condensed set S is the condensed set computed
from the initial training set. The root node broad-
casts the condensed set S to all nodes. The con-
densed set computed by distributed approach for
initial training set is the same as the condensed set
computed by our sequential Method 1.

In algorithm 5, for the remaining incoming data
points, on each node, the data points are classi-
fied with condensed set S and the misclassified data
points are added to the condensed set Si. In the
streaming data set, whenever we want to have a con-
densed set for classification, it will merge all the
condensed sets Si into the final condensed set S on
the root node. During classification of test data, the
algorithm will use this condensed set instead of the
complete training data set.

Table 2. Datasets used in experiments

Dataset No. of
Sam-
ples

No. of
fea-
tures

No. of
classes

Optical dig. rec. 5,620 64 10
Pen dig. rec. 10,992 16 10
Letter image rec. 20,000 16 26
Gisette 15,300 5000 2
Forrest cover type 581,012 54 7

PARALLEL MCNN (PMCNN) WITH . . .

Final condensed set

S
P
[0] ------- S

P
[c]

T
P
[0] ------ T

P
[c]

Initial Training Set (Root node with id ‘0’)

Node 1 Node pRoot node

S
1
[0] ------- S

1
[c]

T
1
[0] ------ T

1
[c] S[0] ------ S[c]

T[0] ----- T[c]

c[i] = S[i]/T[i]

C
1
[0] ------ C

1
[c] C

P
[0] ------ C

P
[c]

C[0] ------- C[c]

S={C[0],…,C[c]}

S

Classify data points

with S1
 and add all

computed prototypes

into S1

Calculate center of each class

Calculate centroid of each class
and initial condensed set

Collect condensed set from all nodes
and merge into condensed set S

S={ S1,…, SP
}

Classify data points

with S1
 and add all

computed prototypes

into SP

S

Figure 1. Distributed architecture for prototype selection.

Table 1. Accuracy (%) obtained on streaming data

Dataset kNN CNN MCNN WECU Method 1 Method 2
Optical recog 97.99 93.84 92.65 91.60 93.71 91.04
Pen digit recog 97.89 90.94 89.37 89.37 95.43 91.57
Letter recog 95.29 91.29 91.46 88.97 90.06 89.02
Gisette 96.20 88.91 87.20 89.90 91.70 90.30
Forest cover 84.07 73.55 71.59 72.78 75.04 71.52

Unauthenticated
Download Date | 1/27/18 3:10 PM

162 V. Susheela Devi and Lakhpat Meena

Algorithm 4 Distributed approach to find condensed set from initial training set
Input: T ‘= initial training set block, condensed set ∆Si = ϕ, node id i.
1.
for all xi in T ‘ do

if (label(xi) == j) then
Calculate sum Si[j] of all elements of this class j.
Calculate number of elements T i[j] of this class j.
Send Si[j] and T i[j] to root node.

end if
end for
2.
if (node id i == 0) then

for all class label j do
S[j] = calculate total sum of (S1[j], S2[j], . . . ,Sp[j]).
T[j] = calculate total sum of (T 1[j], T 2[j], . . . ,T p[j]).
c[j] = S[j]/T[j]. Broadcast c[j] to all nodes.

end for
end if
3.
for all class label j in T ‘ do

Compute local centroid point Ci[j], which is nearest neighbor of c[j] in this class.
Send Ci[j] to root node.

end for
4.
if (node id i == 0) then

for all class label j do
C[j] = nearest neighbor in (C1[j], C2[j], . . . ,Cp[j]).
Add C[j] to initial condensed set ∆S.

end for
Broadcast ∆S to all nodes.

end if
5. Set ∆Si = ∆Si ∪∆S and typical = ϕ.
6. Classify all data points of T ‘ with condensed set ∆Si (for node i, its condensed set is denoted by ∆Si).
for all x in T ‘ do

Find neigh = nearest-neighbor(x , ∆Si) .
if label(x) ̸= label(neigh) then

Update typical by adding x.
end if

end for
if typical ̸= ϕ then

Set T ‘ = typical.
Go to step 1.

end if
7.
if (node id i == 0) then

Collect ∆Si of every node i and merge them into condensed set S.
Broadcast S to all nodes.

end if

Unauthenticated
Download Date | 1/27/18 3:10 PM

163V. Susheela Devi and Lakhpat Meena

Algorithm 4 Distributed approach to find condensed set from initial training set
Input: T ‘= initial training set block, condensed set ∆Si = ϕ, node id i.
1.
for all xi in T ‘ do

if (label(xi) == j) then
Calculate sum Si[j] of all elements of this class j.
Calculate number of elements T i[j] of this class j.
Send Si[j] and T i[j] to root node.

end if
end for
2.
if (node id i == 0) then

for all class label j do
S[j] = calculate total sum of (S1[j], S2[j], . . . ,Sp[j]).
T[j] = calculate total sum of (T 1[j], T 2[j], . . . ,T p[j]).
c[j] = S[j]/T[j]. Broadcast c[j] to all nodes.

end for
end if
3.
for all class label j in T ‘ do

Compute local centroid point Ci[j], which is nearest neighbor of c[j] in this class.
Send Ci[j] to root node.

end for
4.
if (node id i == 0) then

for all class label j do
C[j] = nearest neighbor in (C1[j], C2[j], . . . ,Cp[j]).
Add C[j] to initial condensed set ∆S.

end for
Broadcast ∆S to all nodes.

end if
5. Set ∆Si = ∆Si ∪∆S and typical = ϕ.
6. Classify all data points of T ‘ with condensed set ∆Si (for node i, its condensed set is denoted by ∆Si).
for all x in T ‘ do

Find neigh = nearest-neighbor(x , ∆Si) .
if label(x) ̸= label(neigh) then

Update typical by adding x.
end if

end for
if typical ̸= ϕ then

Set T ‘ = typical.
Go to step 1.

end if
7.
if (node id i == 0) then

Collect ∆Si of every node i and merge them into condensed set S.
Broadcast S to all nodes.

end if

PARALLEL MCNN (PMCNN) WITH . . .

Algorithm 5 Distributed approach to find condensed set from remaining incoming data points
Input: R‘= Incoming training set block, condensed set Si = ϕ, node id i.
1. For remaining incoming data points from R‘:
Classify data points with condensed set Si (for node with id i, its condensed set is denoted by Si).
for all x in R‘ do

Find neigh = nearest-neighbor(x , Si) .
if label(x) ̸= label(neigh) then

update Si by adding x into it.
end if

end for
2.
if (node id i == 0) then

Collect Si of every node i and merge them into final condensed set S.
end if

Table 3. Time taken for condensation process in seconds

Dataset CNN MCNN Method 1 Method 2
Optical recog 74.53 107.56 31.35 38.41
Pen digit recog 78.88 121.39 47.37 58.98
Letter recog 781.82 1142.12 410.57 574.35
Gisette 2065.74 3036.46 1426.95 1823.38
Forest cover 23849.17 32513.98 12943.99 17963.45

Table 4. Total execution time in seconds

Dataset KNN CNN MCNN WECU Method 1 Method 2
Optical recog 219.37 108.54 123.48 103.16 51.40 57.02
Pen digit recog 367.25 113.99 151.39 109.37 84.04 96.46
Letter recog 1881.05 1088.75 1258.75 835.05 587.91 746.05
Gisette 8592.91 3261.94 5136.13 2409.37 1732.53 2318.86
Forest cover 67485.97 39481.85 45541.17 23109.37 17489.35 20942.11

Unauthenticated
Download Date | 1/27/18 3:10 PM

164 V. Susheela Devi and Lakhpat Meena

Table 5. Size of dataset for initial phase

Dataset Method 1 Method2
Optical recog 260 260

Pen digit recog 230 230
Letter recog 702 702

Gisette 978 978
Forest cover 12922 12922

4 Results

The data sets used for our experiments are given
in Table 2. The last data set, Forest cover type data
set is a large data set having 581,012 data points. It
is about predicting the forest cover type from given
observations. This set has been used to show re-
sults on a large dataset. The letter recognition data
set is used to classify black-and-white rectangular
pixel displays in one of the 26 capital letters of the
English alphabet. The other two datasets are used
for handwritten digits recognition. These are the
Optical recognition of handwritten digits data set
and the Pen-based recognition of handwritten digits
data set. GISETTE dataset is related to a handwrit-
ten digit recognition problem. It is used to separate
the digits ’4’ and ’9’ which are generally confused
for each other. This dataset is one of five datasets
of the NIPS 2003 feature selection challenge. The
results of using Method 1 and Method 2 is com-
pared with results using WECU, MCNN and CNN.
It is also compared with results using kNN where
no condensation is carried out.

Table 1 shows the classification accuracy ob-
tained using the prototype set obtained by all the
methods. Figure 2 gives the comparison of classi-
fication accuracy on different datasets for all meth-
ods. Table 3 shows the time taken for the condensa-
tion method using Method 1 and Method 2 and also
using CNN and MCNN. Table 4 gives details of the
total execution time for the various algorithms.

From Table 1, the classification accuracy ob-
tained by using k-nn rule on the complete dataset
is the highest accuracy. There is no condensation
of the dataset and the entire training set is used for
classification. The execution time given in Table 4
for this approach, is the overall time it takes to clas-
sify the test data set using the entire training data
set. As expected this takes the most time.

In Table 1, the classification accuracy obtained
using CNN and MCNN is then reported. Both these
approaches require the complete data set simultane-
ously to compute the condensed set from the train-
ing dataset. The given total execution time from
Table 4 for both approaches is the total time taken
for computation of condensed set and classification
of test data using that condensed set. The condensa-
tion time given in Table 3 is the time taken to carry
out the condensation process with a particular ap-
proach.

Figure 3. Execution time comparison of all six
algorithms for Optical recog. data set and Pen

recog. data set

Figure 4. Execution time comparison of all six
algorithms for Letter recog. data set

Dataset kNN CNN MCNN WECU Method 1 Method 2
Optical recog 97.99 93.84 92.65 91.60 93.71 91.04
Pen digit recog 97.89 90.94 89.37 89.37 95.43 91.57
Letter recog 95.29 91.29 91.46 88.97 90.06 89.02
Gisette 96.20 88.91 87.20 89.90 91.70 90.30
Forest cover 84.07 73.55 71.59 72.78 75.04 71.52

Table 2: Accuracy (%) obtained on streaming data

ously to compute the condensed set from the train-
ing dataset. The given total execution time from Ta-
ble 4 for both approaches is the total time taken for
computation of condensed set and classification of
test data using that condensed set. The condensation
time given in Table 3 is the time taken to carry out
the condensation process with a particular approach.

Opt. recog. data set Pen recog. data set

100

200

300

400

21
9

36
7

10
8

11
312

3 15
1

10
3

10
9

51

84

57

96

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)

Figure 3: Execution time comparison of all six al-
gorithms for Optical recog. data set and Pen recog.
data set

Table 2 also shows performance results of WECU
(Weighted Ensemble with one-class Classification
based on Updating of data chunk) approach used
by Czarnowski and Jedrzejowicz [14], where an en-

Letter recog. data set
500

1,000

1,500

2,000

1,
88

1

1,
08

8 1,
25

8

83
5

58
7

74
6

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)

k-nn method with complete data set
CNN rule

MCNN rule
WECU

Streaming Method 1
Streaming Method 2

Figure 4: Execution time comparison of all six algo-
rithms for Letter recog. data set

semble classifier is used for classification of data
streams. It uses 10% of original dataset as thresh-
old to use data chunks at a particular time.

Table 2 also shows the classification accuracy ob-
tained using Method 1 and Method 2 which are pro-
posed in this paper. The total execution time in

10

Dataset kNN CNN MCNN WECU Method 1 Method 2
Optical recog 97.99 93.84 92.65 91.60 93.71 91.04
Pen digit recog 97.89 90.94 89.37 89.37 95.43 91.57
Letter recog 95.29 91.29 91.46 88.97 90.06 89.02
Gisette 96.20 88.91 87.20 89.90 91.70 90.30
Forest cover 84.07 73.55 71.59 72.78 75.04 71.52

Table 2: Accuracy (%) obtained on streaming data

ously to compute the condensed set from the train-
ing dataset. The given total execution time from Ta-
ble 4 for both approaches is the total time taken for
computation of condensed set and classification of
test data using that condensed set. The condensation
time given in Table 3 is the time taken to carry out
the condensation process with a particular approach.

Opt. recog. data set Pen recog. data set

100

200

300

400

21
9

36
7

10
8

11
312

3 15
1

10
3

10
9

51

84

57

96

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)

Figure 3: Execution time comparison of all six al-
gorithms for Optical recog. data set and Pen recog.
data set

Table 2 also shows performance results of WECU
(Weighted Ensemble with one-class Classification
based on Updating of data chunk) approach used
by Czarnowski and Jedrzejowicz [14], where an en-

Letter recog. data set
500

1,000

1,500

2,000

1,
88

1

1,
08

8 1,
25

8

83
5

58
7

74
6

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)

k-nn method with complete data set
CNN rule

MCNN rule
WECU

Streaming Method 1
Streaming Method 2

Figure 4: Execution time comparison of all six algo-
rithms for Letter recog. data set

semble classifier is used for classification of data
streams. It uses 10% of original dataset as thresh-
old to use data chunks at a particular time.

Table 2 also shows the classification accuracy ob-
tained using Method 1 and Method 2 which are pro-
posed in this paper. The total execution time in

10

Unauthenticated
Download Date | 1/27/18 3:10 PM

165V. Susheela Devi and Lakhpat Meena

Table 5. Size of dataset for initial phase

Dataset Method 1 Method2
Optical recog 260 260

Pen digit recog 230 230
Letter recog 702 702

Gisette 978 978
Forest cover 12922 12922

4 Results

The data sets used for our experiments are given
in Table 2. The last data set, Forest cover type data
set is a large data set having 581,012 data points. It
is about predicting the forest cover type from given
observations. This set has been used to show re-
sults on a large dataset. The letter recognition data
set is used to classify black-and-white rectangular
pixel displays in one of the 26 capital letters of the
English alphabet. The other two datasets are used
for handwritten digits recognition. These are the
Optical recognition of handwritten digits data set
and the Pen-based recognition of handwritten digits
data set. GISETTE dataset is related to a handwrit-
ten digit recognition problem. It is used to separate
the digits ’4’ and ’9’ which are generally confused
for each other. This dataset is one of five datasets
of the NIPS 2003 feature selection challenge. The
results of using Method 1 and Method 2 is com-
pared with results using WECU, MCNN and CNN.
It is also compared with results using kNN where
no condensation is carried out.

Table 1 shows the classification accuracy ob-
tained using the prototype set obtained by all the
methods. Figure 2 gives the comparison of classi-
fication accuracy on different datasets for all meth-
ods. Table 3 shows the time taken for the condensa-
tion method using Method 1 and Method 2 and also
using CNN and MCNN. Table 4 gives details of the
total execution time for the various algorithms.

From Table 1, the classification accuracy ob-
tained by using k-nn rule on the complete dataset
is the highest accuracy. There is no condensation
of the dataset and the entire training set is used for
classification. The execution time given in Table 4
for this approach, is the overall time it takes to clas-
sify the test data set using the entire training data
set. As expected this takes the most time.

In Table 1, the classification accuracy obtained
using CNN and MCNN is then reported. Both these
approaches require the complete data set simultane-
ously to compute the condensed set from the train-
ing dataset. The given total execution time from
Table 4 for both approaches is the total time taken
for computation of condensed set and classification
of test data using that condensed set. The condensa-
tion time given in Table 3 is the time taken to carry
out the condensation process with a particular ap-
proach.

Figure 3. Execution time comparison of all six
algorithms for Optical recog. data set and Pen

recog. data set

Figure 4. Execution time comparison of all six
algorithms for Letter recog. data set

PARALLEL MCNN (PMCNN) WITH . . .

Table 6. Size of condensed set

Dataset CNN MCNN Method1 Method 2
Optimal recog 306 68 217 143
Pen digit recog 313 45 256 189

Letter recog 1532 189 708 504
Gisette 195 71 152 108

Forest cover 31204 18809 24763 19045

Figure 2. Accuracy comparison of both proposed methods and existing methods with different data sets

Opt. recog. Pen recog. Letter recog. Gisette Forest cover

70

80

90

100 97
.9

9

97
.8

8

95
.2

9

96
.2

84
.0

7

93
.8

4

90
.9

4

91
.2

9

88
.9

1

73
.5

5

92
.6

5

89
.3

6 91
.4

5

87
.2

71
.5

9

91
.6

90
.3

4

88
.9

7

89
.9

72
.7

8

93
.7

1

95
.4

3

90
.0

6

91
.7

75
.0

4

91
.0

4

91
.5

7

89
.0

2

90
.3

71
.5

2

A
cc

ur
ac

y
(%

)

k-nn method CNN rule MCNN rule WECU Proposed Method 1 Proposed Method 2

Figure 2: Accuracy comparison of both proposed methods and existing methods with different data sets

18

Unauthenticated
Download Date | 1/27/18 3:10 PM

166 V. Susheela Devi and Lakhpat Meena

Figure 5. Execution time comparison of all six
algorithms for Gisette data set

Figure 6. Execution time comparison of all six
algorithms for Forest cover type data set

Table 1 shows performance results of WECU
(Weighted Ensemble with one-class Classification
based on Updating of data chunk) approach used
by Czarnowski and Jedrzejowicz [14], where an en-
semble classifier is used for classification of data
streams. It uses 10% of original dataset as thresh-
old to use data chunks at a particular time.

Table 1 also shows the classification accuracy
obtained using Method 1 and Method 2 which are
proposed in this paper. The total execution time in
both rows is the sum of time taken by the algorithm

to compute the condensed set and in classification
using this computed condensed set. Both methods
have some initial data points as the dataset for ini-
tial phase. Table 5 gives the number of initial data
points used in Method 1 and Method 2. Both pro-
posed methods start with MCNN rule on the ini-
tial data points and then proceed with remaining
data points. The condensed set produced by the
proposed methods give better classification accu-
racy on most datasets than other approaches since it
includes all important required data points in con-
densed set with respect to their distribution.

From Table 5, it can be seen that for the op-
tical recognition of handwritten digits dataset, the
proposed methods uses 260 data samples from the
training data set as the dataset for the initial phase.
Method 1 gives better results than Method 2 but has
more data points in the final condensed set. We can
see that in these two methods, the difference in ac-
curacy is 1-2%. The size of the condensed set by
Method 1 is 217 but by Method 2, it is 143. In
Method 2, step 6 shows that it does not add mis-
classified data points in the condensed set directly.
It again applies MCNN rule on the computed set of
misclassified data points. It reduces the size of the
overall condensed set. On the other hand, Method 2
takes more time for the condensation process than
Method 1. It happens again due to applying MCNN
rule iteratively. Method 1 gives better accuracy than
WECU approach, CNN rule and MCNN rule on the
complete data set andMethod 2. WECU approach
requires more time than both proposed methods. On
this data set, MCNN rule gives 92.65% and Method
1 gives 93.71% accuracy.

Experimental results show that Method 1 with
Pen-based recognition of handwritten digits dataset
gives an accuracy of 95.43% which is very close
to the accuracy given when the complete training
dataset is used for classification as shown in Table
1. WECU approach gives 90.94% accuracy which
is less than both the proposed methods and also re-
quires more execution time. MCNN rule also gives
less accuracy than both proposed methods. With
this data set, the algorithm first uses 230 data sam-
ples as the initial training dataset to compute initial
condensed set. Both generate condensed sets which
are very small in size. The condensed set computed
by Method 1 contains only 256 data samples from
the training dataset. Method 2 gives a condensed

Gisette data set

2,000

4,000

6,000

8,000

8,
59

2

3,
26

1

5,
13

6

2,
40

9

1,
73

2 2,
31

8

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)

Figure 5: Execution time comparison of all six algo-
rithms for Gisette data set

both rows is the sum of time taken by the algorithm
to compute the condensed set and in classification
using this computed condensed set. Both methods
have some initial data points as the dataset for ini-
tial phase. Table 5 gives the number of initial data
points used in Method 1 and Method 2. Both pro-
posed methods start with MCNN rule on the initial
data points and then proceed with remaining data
points. The condensed set produced by the proposed
methods give better classification accuracy on most
datasets than other approaches since it includes all
important required data points in condensed set with
respect to their distribution.

From Table 5, it can be seen that for the op-
tical recognition of handwritten digits dataset, the
proposed methods uses 260 data samples from the
training data set as the dataset for the initial phase.
Method 1 gives better results than Method 2 but has
more data points in the final condensed set. We can
see that in these two methods, the difference in ac-
curacy is 1-2%. The size of the condensed set by

Forest cover data set

2

3

4

5

6

7
·104

67
,4

85

39
,4

81 45
,5

41

23
,1

09

17
,4

89 20
,9

42

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)
k-nn method with complete data set

CNN rule
MCNN rule

WECU
Streaming Method 1
Streaming Method 2

Figure 6: Execution time comparison of all six algo-
rithms for Forest cover type data set

Method 1 is 217 but by Method 2, it is 143. In
Method 2, step 6 shows that it does not add mis-
classified data points in the condensed set directly.
It again applies MCNN rule on the computed set of
misclassified data points. It reduces the size of the
overall condensed set. On the other hand, Method
2 takes more time for the condensation process than
Method 1. It happens again due to applying MCNN
rule iteratively. Method 1 gives better accuracy than
WECU approach, CNN rule and MCNN rule on the
complete data set andMethod 2. WECU approach
requires more time than both proposed methods. On
this data set, MCNN rule gives 92.65% and Method
1 gives 93.71% accuracy.

12

Gisette data set

2,000

4,000

6,000

8,000

8,
59

2

3,
26

1

5,
13

6

2,
40

9

1,
73

2 2,
31

8

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)

Figure 5: Execution time comparison of all six algo-
rithms for Gisette data set

both rows is the sum of time taken by the algorithm
to compute the condensed set and in classification
using this computed condensed set. Both methods
have some initial data points as the dataset for ini-
tial phase. Table 5 gives the number of initial data
points used in Method 1 and Method 2. Both pro-
posed methods start with MCNN rule on the initial
data points and then proceed with remaining data
points. The condensed set produced by the proposed
methods give better classification accuracy on most
datasets than other approaches since it includes all
important required data points in condensed set with
respect to their distribution.

From Table 5, it can be seen that for the op-
tical recognition of handwritten digits dataset, the
proposed methods uses 260 data samples from the
training data set as the dataset for the initial phase.
Method 1 gives better results than Method 2 but has
more data points in the final condensed set. We can
see that in these two methods, the difference in ac-
curacy is 1-2%. The size of the condensed set by

Forest cover data set

2

3

4

5

6

7
·104

67
,4

85

39
,4

81 45
,5

41

23
,1

09

17
,4

89 20
,9

42

Ex
ec

ut
io

n
tim

e
(i

n
se

co
nd

s)

k-nn method with complete data set
CNN rule

MCNN rule
WECU

Streaming Method 1
Streaming Method 2

Figure 6: Execution time comparison of all six algo-
rithms for Forest cover type data set

Method 1 is 217 but by Method 2, it is 143. In
Method 2, step 6 shows that it does not add mis-
classified data points in the condensed set directly.
It again applies MCNN rule on the computed set of
misclassified data points. It reduces the size of the
overall condensed set. On the other hand, Method
2 takes more time for the condensation process than
Method 1. It happens again due to applying MCNN
rule iteratively. Method 1 gives better accuracy than
WECU approach, CNN rule and MCNN rule on the
complete data set andMethod 2. WECU approach
requires more time than both proposed methods. On
this data set, MCNN rule gives 92.65% and Method
1 gives 93.71% accuracy.

12
Unauthenticated

Download Date | 1/27/18 3:10 PM

167V. Susheela Devi and Lakhpat Meena

Figure 5. Execution time comparison of all six
algorithms for Gisette data set

Figure 6. Execution time comparison of all six
algorithms for Forest cover type data set

Table 1 shows performance results of WECU
(Weighted Ensemble with one-class Classification
based on Updating of data chunk) approach used
by Czarnowski and Jedrzejowicz [14], where an en-
semble classifier is used for classification of data
streams. It uses 10% of original dataset as thresh-
old to use data chunks at a particular time.

Table 1 also shows the classification accuracy
obtained using Method 1 and Method 2 which are
proposed in this paper. The total execution time in
both rows is the sum of time taken by the algorithm

to compute the condensed set and in classification
using this computed condensed set. Both methods
have some initial data points as the dataset for ini-
tial phase. Table 5 gives the number of initial data
points used in Method 1 and Method 2. Both pro-
posed methods start with MCNN rule on the ini-
tial data points and then proceed with remaining
data points. The condensed set produced by the
proposed methods give better classification accu-
racy on most datasets than other approaches since it
includes all important required data points in con-
densed set with respect to their distribution.

From Table 5, it can be seen that for the op-
tical recognition of handwritten digits dataset, the
proposed methods uses 260 data samples from the
training data set as the dataset for the initial phase.
Method 1 gives better results than Method 2 but has
more data points in the final condensed set. We can
see that in these two methods, the difference in ac-
curacy is 1-2%. The size of the condensed set by
Method 1 is 217 but by Method 2, it is 143. In
Method 2, step 6 shows that it does not add mis-
classified data points in the condensed set directly.
It again applies MCNN rule on the computed set of
misclassified data points. It reduces the size of the
overall condensed set. On the other hand, Method 2
takes more time for the condensation process than
Method 1. It happens again due to applying MCNN
rule iteratively. Method 1 gives better accuracy than
WECU approach, CNN rule and MCNN rule on the
complete data set andMethod 2. WECU approach
requires more time than both proposed methods. On
this data set, MCNN rule gives 92.65% and Method
1 gives 93.71% accuracy.

Experimental results show that Method 1 with
Pen-based recognition of handwritten digits dataset
gives an accuracy of 95.43% which is very close
to the accuracy given when the complete training
dataset is used for classification as shown in Table
1. WECU approach gives 90.94% accuracy which
is less than both the proposed methods and also re-
quires more execution time. MCNN rule also gives
less accuracy than both proposed methods. With
this data set, the algorithm first uses 230 data sam-
ples as the initial training dataset to compute initial
condensed set. Both generate condensed sets which
are very small in size. The condensed set computed
by Method 1 contains only 256 data samples from
the training dataset. Method 2 gives a condensed

PARALLEL MCNN (PMCNN) WITH . . .

set which have 189 data points from the training
dataset. As shown in the results, both methods have
a small execution time for condensation process.

After condensation, it used this smaller size
condensed set for classification of test data which
also takes very less time. So both methods
takes very less overall execution time compared to
WECU, CNN rule and MCNN rule. We can see
from Table 3 that condensation process of Method
1 is three times faster than condensation process of
MCNN rule. The proposed methods need a one-
pass scan of the whole training set, which reduces
execution time and gives faster algorithms.

From Table 5, it can be seen that the proposed
methods use 702 data samples of training dataset
as the initial dataset for letter recognition data set.
This data set has 26 class labels. With this data set,
the proposed Method 1 produces condensed set of
size 708 from the total training set. It gives accuracy
around 90% with this dataset. Method 1 gives clas-
sification accuracy of 90.06% which is more than
Method 2 which gives 89.02% accuracy. WECU
approach gives 88.97 % accuracy. Experimental re-
sults show that MCNN rule gives better accuracy
of 91.456% on the letter recognition dataset which
requires more execution time and entire training
dataset on the disk space at the same time.

Gisette dataset has 5000 attributes. It gives
91.70% accuracy with the proposed Method 1,
which used a condensed set for classification. The
condensed set computed by Method 1 has only 152
data points. Method 1 also requires very less exe-
cution time compared to all other methods.

To investigate advantages of the proposed meth-
ods, we conducted experiments on a large data
set. We used Forest Cover type dataset which has
581,012 data samples. From Table 4, classifica-
tion of test data with the whole training set takes
a very long time to execute. CNN and MCNN rule
on this big dataset also takes too much execution
time. During condensation process, it iteratively
works on the misclassified data samples from the
whole training dataset which takes a long time for
large datasets. The proposed methods used 12922
data samples as the initial training dataset to com-
pute initial condensed set. After computing the con-
densed set, both methods require a one-pass scan
of the remaining data samples which requires less
execution time. The condensed set computed by

Method 1 have more data samples than Method 2
but gives more accuracy than Method 2. Method 1
gives 75.04% classification accuracy with the com-
puted condensed set. Method 2 gives an accuracy
which is very close to the accuracy given by MCNN
rule which is around 71%.

From the experimental results, we can see that
the proposed methods give better results than the re-
sults obtained by ANNCAD approach[10] for both
letter recognition and forest cover datasets.

Experimental results in Table 1 show that the
proposed methods gives good accuracy with less
execution time. On every data set, the proposed
methods compute very small condensed sets as can
be seen in Table 6. The results show that after con-
densation, the algorithms use the condensed set and
also give good accuracy. We can observe from the
results that both the proposed methods give better
results than the existing WECU approach for data
streams and also with less execution time and mem-
ory space. It is evident in all five datasets, that there
is a huge time saving . Also, the entire dataset do
not need to be stored. Only the initial training set
and the condensed set formed needs to be stored.

To give an idea of the huge savings in time, Fig-
ure 3, Figure 4, Figure 5 and Figure 6 give the time
taken by the various algorithms for all the datasets
for sequential algorithms.

Table 7 shows the comparison between dis-
tributed approach and sequential approach of our
algorithm. The distributed approach uses the same
approach as our sequential approach for MCNN.
The calculation of the centroid and the closest point
to the centroid is done using a number of processors
leading to saving time. It can be seen from Table 7
that the size of the condensed set and the classifica-
tion accuracy in the distributed method is almost the
same as for the sequential method. We can observe
that the total execution time is reduced with respect
to higher number of parallel nodes. It gives bet-
ter results when we have large datasets. From Ta-
ble 7, for forest cover dataset, sequential streaming
Method 1 takes around 120 minutes but distributed
algorithm takes around 17 minutes only. The dis-
tributed approach reduces the time complexity with
almost the same classification accuracy.

Unauthenticated
Download Date | 1/27/18 3:10 PM

168 V. Susheela Devi and Lakhpat Meena

Table 7. Experimental results for distributed approach on different datasets

Datasets
Algorithms Letter recog. Gisette Forest cover

Total Execution Time
(in seconds)

Method 1 2.70 260.82 7346.74
Distributed Method (p=2) 1.58 140.19 3848.48
Distributed Method (p=4) 1.06 77.86 2135.54
Distributed Method (p=8) .32 34.61 997.83

Size of Condensed Set
Method 1 708 152 24763
Distributed Method (p=2) 861 225 25300
Distributed Method (p=4) 803 247 26162
Distributed Method (p=8) 846 239 26034

Classification Accuracy
(%)

Method 1 90.06 91.70 75.04
Distributed Method (p=2) 88.53 90.50 72.16
Distributed Method (p=4) 89.31 90.47 73.28
Distributed Method (p=8) 88.79 90.68 72.37

5 Conclusion

In this paper, we propose two prototype selec-
tion methods for data compression on data streams.
The algorithms give good results for both streaming
datasets and large datasets. We do not need to store
the complete training dataset in memory at the same
time. Streaming data comes as a sequence of data
points with infinite length. The proposed methods
do not require the complete dataset at a particular
time, therefore they handle memory requirements
and strict time constraints for streams. It has also
been shown how for large data by dividing it into
chunks or using one pattern at a time, this algorithm
can be used leading to considerable saving in time
and space complexity.

We have discussed both proposed methods with
regard to accuracy and execution time and also
compared with existing approaches. Method 1 re-
quires less execution time and Method 2 computes
smaller condensed set. Both methods have their
own advantages.

We also propose a distributed approach for our
sequential streaming method. The distributed ap-
proach for prototype selection reduces time com-
plexity and gives good classification accuracy. The
benefits of distributed approach over sequential
method has been shown by comparing results of
both approaches.

Future work includes doing more experimen-
tation on larger datasets and streaming data both
for sequential algorithms as well as the distributed
framework.

References
[1] Lakhpat Meena and V. Susheela Devi, Prototype

Selection on Large and Streaming Data, Interna-
tional Conference on Neural Information Process-
ing(ICONIP 2015), 2015.

[2] M. Narasimha Murty and V. Susheela Devi, Pattern
Recognition: An Algorithmic Approach, Springer
and Universities Press, 2012.

[3] T.M. Cover, P.E. Hart, Nearest neighbor pattern
classification, IEEE Trans. on Information Theory,
IT-13: 21-27, 1967.

[4] P.E. Hart, The condensed nearest neighbor rule.
IEEE Trans. on Information Theory, IT-14(3): 515-
516, 1968.

[5] G.W. Gates, The reduced nearest neighbour rule,
IEEE Trans. on Information Theory, IT-18 (3): 431-
433, 1972

[6] V. Susheela Devi, M. Narasimha Murty. An in-
cremental prototype set building technique, Pattern
Recognition, 35: 505-513, 2002.

[7] F. Angiulli, Fast Condensed Nearest Neighbor Rule,
Proc. 22nd International Conf. Machine Learning
(ICML ’05), 2005

[8] Angiulli, Fabrizio, and Gianluigi Folino, Distributed
nearest neighbor-based condensation of very large
data sets, Knowledge and Data Engineering, IEEE
Transactions on 19.12, 2007, 1593-1606, 2007.

Unauthenticated
Download Date | 1/27/18 3:10 PM

169V. Susheela Devi and Lakhpat Meena

Table 7. Experimental results for distributed approach on different datasets

Datasets
Algorithms Letter recog. Gisette Forest cover

Total Execution Time
(in seconds)

Method 1 2.70 260.82 7346.74
Distributed Method (p=2) 1.58 140.19 3848.48
Distributed Method (p=4) 1.06 77.86 2135.54
Distributed Method (p=8) .32 34.61 997.83

Size of Condensed Set
Method 1 708 152 24763
Distributed Method (p=2) 861 225 25300
Distributed Method (p=4) 803 247 26162
Distributed Method (p=8) 846 239 26034

Classification Accuracy
(%)

Method 1 90.06 91.70 75.04
Distributed Method (p=2) 88.53 90.50 72.16
Distributed Method (p=4) 89.31 90.47 73.28
Distributed Method (p=8) 88.79 90.68 72.37

5 Conclusion

In this paper, we propose two prototype selec-
tion methods for data compression on data streams.
The algorithms give good results for both streaming
datasets and large datasets. We do not need to store
the complete training dataset in memory at the same
time. Streaming data comes as a sequence of data
points with infinite length. The proposed methods
do not require the complete dataset at a particular
time, therefore they handle memory requirements
and strict time constraints for streams. It has also
been shown how for large data by dividing it into
chunks or using one pattern at a time, this algorithm
can be used leading to considerable saving in time
and space complexity.

We have discussed both proposed methods with
regard to accuracy and execution time and also
compared with existing approaches. Method 1 re-
quires less execution time and Method 2 computes
smaller condensed set. Both methods have their
own advantages.

We also propose a distributed approach for our
sequential streaming method. The distributed ap-
proach for prototype selection reduces time com-
plexity and gives good classification accuracy. The
benefits of distributed approach over sequential
method has been shown by comparing results of
both approaches.

Future work includes doing more experimen-
tation on larger datasets and streaming data both
for sequential algorithms as well as the distributed
framework.

References
[1] Lakhpat Meena and V. Susheela Devi, Prototype

Selection on Large and Streaming Data, Interna-
tional Conference on Neural Information Process-
ing(ICONIP 2015), 2015.

[2] M. Narasimha Murty and V. Susheela Devi, Pattern
Recognition: An Algorithmic Approach, Springer
and Universities Press, 2012.

[3] T.M. Cover, P.E. Hart, Nearest neighbor pattern
classification, IEEE Trans. on Information Theory,
IT-13: 21-27, 1967.

[4] P.E. Hart, The condensed nearest neighbor rule.
IEEE Trans. on Information Theory, IT-14(3): 515-
516, 1968.

[5] G.W. Gates, The reduced nearest neighbour rule,
IEEE Trans. on Information Theory, IT-18 (3): 431-
433, 1972

[6] V. Susheela Devi, M. Narasimha Murty. An in-
cremental prototype set building technique, Pattern
Recognition, 35: 505-513, 2002.

[7] F. Angiulli, Fast Condensed Nearest Neighbor Rule,
Proc. 22nd International Conf. Machine Learning
(ICML ’05), 2005

[8] Angiulli, Fabrizio, and Gianluigi Folino, Distributed
nearest neighbor-based condensation of very large
data sets, Knowledge and Data Engineering, IEEE
Transactions on 19.12, 2007, 1593-1606, 2007.

PARALLEL MCNN (PMCNN) WITH . . .

[9] B. Karacali and H. Krim, Fast Minimization of
Structural Risk by Nearest Neighbor Rule, IEEE
Trans. Neural Networks, vol. 14, no. 1, pp. 127-134,
2003.

[10] Law, Yan-Nei and Zaniolo, Carlo, An adaptive
nearest neighbor classification algorithm for data
streams, In Knowledge Discovery in Databases:
PKDD 2005, pp. 108120, Springer, 2005.

[11] J. Beringer, E. Hüllermeier, Efficient instance-
based learning on data streams, Intelligent Data
Analysis, 11 (6) 627-650, 2007

[12] K. Tabata, Maiko Sato, Mineichi Kudo, Data com-
pression by volume prototypes for streaming data,
Pattern Recognition, 43: 3162-3176, 2010

[13] Salvador Garcia, Joaquin Derrac, Prototype selec-
tion for nearest neighbor classification: Taxonomy
and Empirical study, IEEE Trans. on PAMI, 34:
417-435, 2012.

[14] Ireneusz Czarnowski, Piotr Jedrzejowicz, Ensem-
ble classifier for mining data streams, 18th Inter-

national Conference on Knowledge-Based and In-
telligent Information and Engineering Systems(KES
2014), Procedia Computer Science, 35: 397-406,
2014.

[15] Jacob Bien, Robert Tibshirani, Prototype selection
for interpretable classification, Annals of Applied
Statistics, Vol. 5, No. 4, 2403-2424, 2011.

[16] Shikha V. Gadodiya, Manoj B. Chandak, Proto-
type selection algorithms for kNN Classifier: A Sur-
vey, International Journal of Advanced Research in
Computer and Communication Engineering (IJAR-
CCE), Vol. 2, Issue 12, pp. 4829-4832, 2013.

[17] Nele Verbiest, Chris Cornelis, Francisco Herrera,
FRPS: A fuzzy rough prototype selection method,
Vol. 46, Issue 10, 2770-2782, 2013.

[18] Juan Li, Yuping Wang, A nearest prototype se-
lection algorithm using multi-objective optimization
and partition, 9th International Conference on Com-
putational Intelligence and Security, 264-268, 2013.

V. Susheela Devi is a lecturer at the
Department of Computer Science and
Automation, Indian Institute of Sci-
ence, Bangalore, India. She obtained
her Ph.D. degree in 2000 from Indian
Institute of Science, Bangalore. She
works in the fields of pattern recogni-
tion, machine learning and soft com-
puting.

Lakhpat Meena completed his Master
of Engineering degree from the De-
partment of Computer Science and Au-
tomation, Indian Institute of Science,
Bangalore, India. He worked on algo-
rithms for large and streaming data and
parallel computation.

Unauthenticated
Download Date | 1/27/18 3:10 PM

