Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The energy equation corresponding to the dual phase lag model (DPLM) results from the generalized form of the Fourier law, in which the two ‘delay times’ (relaxation and thermalization time) are introduced. The DPLM should be used in the case of microscale heat transfer analysis, in particular when thermal processes are characterized by extremely short duration (e.g. ultrafast laser pulse), considerable temperature gradients and very small dimensions (e.g. thin metal film). In this paper, the problem of relaxation and thermalization time identification is discussed, at the same time the heat transfer processes proceeding in the domain of a thin metal film subjected to a laser beam are analyzed. The solution presented bases on the application of evolutionary algorithms. The additional information concerning the transient temperature distribution on a metal film surface is assumed to be known. At the stage of numerical realization, the finite difference method (FDM) is used. In the final part of the paper, an example of computations is presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
837--845
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- Częstochowa University of Technology, Czestochowa, Poland and Higher School of Labour Safety Management, Katowice, Poland
autor
- Silesian University of Technology, Institute of Computational Mechanics and Engineering, Gliwice, Poland
Bibliografia
- 1. Al-Nimr M.A., 1997, Heat transfer mechanisms during short duration laser heating of thin metal films, International Journal of Thermophysics, 18, 5, 1257-1268
- 2. Chen J.K., Beraun J.E., 2001, Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Transfer, Part A, 40, 1-20
- 3. Chen G., Borca-Tasciuc D., Yang R.G., 2004, Nanoscale heat transfer, Encyclopedia of Nanoscience and Nanotechnology, X, 1-30
- 4. Lelito J., Żak P.L., Greer A.L., Suchy J.S., Krajewski W.K., Gracz B., Szucki M., Shirzadi A.A., 2012, Crystallization model of magnesium primary phase in the AZ91/SiC composite, Composites Part B: Engineering, 43, 8, 3306-3309
- 5. Lin Z., Zhigilei L.V., 2008, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Physical Review B, 77, 075133-1-075133-17
- 6. Majchrzak E., Mochnacki B., Greer A.L., Suchy J.S., 2009, Numerical modeling of short pulse laser interactions with multi-layered thin metal films, CMES: Computer Modeling in Engineering and Sciences, 41, 2, 131-146
- 7. Majchrzak E., Mochnacki B., Suchy J.S., 2008, Identification of substitute thermal capacity of solidifying alloy, Journal of Theoretical and Applied Mechanics, 46, 2, 257-268
- 8. Majchrzak E., Poteralska J., 2010, Two-temperature microscale heat treansfer model. Part 1: Determination of electrons parameters, Scientific Research of the Institute of Mathematics and Computer Science, Częstochowa, 9, 1, 99-108
- 9. Majchrzak E., Poteralska J., 2011, Two temperature model of microscopic heat transfer, Computer Methods in Material Science, 11, 2, 337-342
- 10. Mochnacki B., Majchrzak E., 2007, Identification of macro and micro parameters in solidification model, Bulletin of the Polish Academy of Sciences – Technical Sciences, 55, 1, 107-113
- 11. Mochnacki B., Suchy J.S., 1995, Numerical Methods in Computations of Foundry Processes, Polish Foundrymen’s Technical Association, Cracow
- 12. Ozisik M.N., Tzou D.Y., 1994, On the wave theory in heat conduction, Journal of Heat Transfer, 116, 526-535
- 13. Tang D.W, Araki N., 1999, Wavy, wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses, International Journal of Heat and Mass Transfer, 42, 855-860
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac3efe08-19e5-4e14-bb7f-1be3b2f87dc8