PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure, Mechanical and Detonation Properties of Elastomeric Micro/Ultrafine-rubber Modified TNT-based Molten Energetic Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Elastomeric micro- and ultrafine-rubber are first considered as binders in melt-cast explosives for improving the mechanical properties. Acrylonitrile-butadiene rubber (NBR), in ultrafine fully vulcanized form (UF-NBR), carboxylated acrylonitrile-butadiene rubber (CNBR), in ultrafine fully vulcanized form (UF-CNBR), styrene-butadiene rubber (SBR), in ultrafine fully vulcanized form (UF-SBR), carboxylated styrene-butadiene rubber (CSBR), in ultrafine fully vulcanized form (UF-CSBR), acrylic rubber (ACM), in ultrafine fully vulcanized form (UF-ACM), room temperature vulcanized silicone rubber (RTV), in ultrafine fully vulcanized form (UF-RTV) and polytetrafluoroethene (PTFE) in micro-rubber form (PTFE-M) were utilized for modifying 2,4,6-trinitrotoluene (TNT) based melt-cast explosives. Based on their dispersity in TNT and RDX slurry, only UF-NBR, UF-CNBR and PTFE-M can be used. In the modification experiment, their influence on the mechanical and detonation performance of the matrixes were studied, as well as the impact sensitivity. Compared with PTFE-M and UF-CNBR, UF-NBR improved the tensile and compressive strength of the original formulation CYCLOTOL-65/35. The toughening mechanism was also explained through interfacial interactions and fracture energy analysis. The predicted detonation properties of the modified formulations (detonation pressure variations from 26 to 28 GPa, detonation velocity variations from 7900 to 8100 m/s) are at the same energy level as CYCLOTOL-65/35. In addition, the drop hammer impact testing results confirm that the formulation containing UF-NBR is more sensitive than the one with UF-CNBR, with the same amount of additive.
Rocznik
Strony
723--743
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering, Nanjing University of Science & Technology, 210094, Nanjing, P.R. China
  • Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, P.R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, P.R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, P.R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, P.R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, P.R. China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics, 621900, Mianyang, P.R. China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an, 710065, P.R. China
Bibliografia
  • [1] Elbeih A., Zeman S., Jungova M., Akstein Z., Effect of Different Polymeric Matrices on the Sensitivity and Performance of Interesting Cyclic Nitramines, Cent. Eur. J. Energ. Mat., 2012, 9(2), 131-138.
  • [2] Elbeih A., Zeman S., Characteristics of Melt Cast Compositions Based on Cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5d]imidazole (BCHMX)/TNT, Cent. Eur. J. Energ. Mat., 2014, 11(4), 501-513.
  • [3] Janssen J.W.A.M., Koeners H.J., Kruse C.G., Habraken C.L., Pyrazoles. XII. The Preparation of 3(5)-Nitropyrazoles by Thermal Rearrangement of N-Nitropyrazoles, J. Org. Chem., 1978, 38, 1777-1782.
  • [4] Trzciński W.A., Cudziło S., Dyjak S., Nita M., A Comparison of the Sensitivity and Performance Characteristics of Melt-pour Explosives with TNT and DNAN Binder, Cent. Eur. J. Energ. Mat., 2014, 11(3), 443-455.
  • [5] Watt D.S., Cliff M.D., Evaluation of 1,3,3-Trinitroazetidine (TNAZ)-A High Performance Melt-castable Explosive, DSTO-TR-1000, 2000.
  • [6] Zhao F., Chen P., Hu R., Luo Y., Zhang Z., Zhou Y., Yang X., Gao Y., Gao S., Shi Q., Thermochemical Properties and Non-isothermal Decomposition Reaction Kinetics of 3,4-Dinitrofurazanfuroxan (DNTF), J. Hazard. Mater., 2004, A113, 67-71.
  • [7] Singh S., Damavarapu R., Surapaneni R., Samuel P., An Insensitive Melt-cast Energetic Material: 1-Methyl-2,4,5-trinitroimidazole: MTNI, 38th Int. Annu. Conf. ICT, Karlsruhe, Germany, 2007, 147.
  • [8] Ma Q., Shu Y.J., Luo G., Chen L., Zheng B., Li H., Toughening and Elasticizing Route of TNT Based Melt-cast Explosives, Chin. J. Energ. Mater., 2012, 20(5), 618-629.
  • [9] Ravi P., Badgujar D.M., Gore G.M., Tewari S.P., Sikder A.K., Review on Melt Cast Explosives. Propellants Explos. Pyrotech., 2011, 36, 393-403.
  • [10] Voigt H.W., Castable Explosive Containing TNT and a Reaction Product of a Diisocyanate and 1,4-Butyleneoxide Polyglycol, US Patent 3,447,980, 2008.
  • [11] Voigt, H.W., Pell L.W., TNT Composition Containing Cellulosic Resin which is Free from Oily Exudation upon Storage, US Patent 3,706,609, 1972.
  • [12] Voigt H.W., Pell L.W., Picard J.P., Cast TNT Explosive Containing Polyurethane Elastomer which is Free from Oily Exudation and Voids and Uniformly Remeltable, US Patent 4,012,245, 1977.
  • [13] Voigt H.W., Castable TNT Compositions Containing a Broad Spectrum Preformed Thermoplastic Polyurethane Elastomer Additive, US Patent 4,284,442, 1981.
  • [14] Voigt H.W., Banker B.R., Preparation of TNT-thermoplastic Polymer Granules Readily Soluble in a TNT Melt, US Patent 4,325,759, 1982.
  • [15] Johnson N.C., Gill R.C., Leahy J.F., Gotzmer C., Fillman H.T., Melt Cast Thermoplastic Elastomeric Plastic Bonded Explosive, US Patent 4,978,482, 1990.
  • [16] Ampleman G., Brousseau P., Thiboutot S., Dubois C., Diaz E., Insensitive Melt Cast Explosive Compositions Containing Energetic Thermoplastic Elastomers, US Patent 6,562,159, 2003.
  • [17] Ampleman G., Brousseau P., Thiboutot S., Rocheleau S., Monteil-Rivera F., Radovic- Hrapovic Z., Hawari J., Sunahara G., Martel R., Coté S., Brochu S., Trudel S., Beland P., Marois A., Evaluation of GIM as Greener Insensitive Meltcast Explosive, Int. J. Energ. Mater. Chem. Prop., 2012, 11, 59-87.
  • [18] Parry M.A., Thorpe B.W., Nucleation and Growth of TNT Containing HNS, ADA057224, 1978.
  • [19] Parry M.A., Thorpe B.W., The Effective Nucleant During the Grain Modification of TNT with HNS, ADA076435, 1979.
  • [20] Trevino S.F., Portnoy S., Effects of HNS on Cast TNT, ADA077111, 1979.
  • [21] Portnoy S., Production of Fine-grained Cast Charges with Unoriented Crystal Structure of TNT or Explosive Compositions Containing TNT, US Patent 4,360,394, 1982.
  • [22] Huang F., Liu Y., Zhang X., Wei G., Gao J., Song Z., Zhang M., Qiao J., Effect of Elastomeric Nanoparticles on Toughness and Heat Resistance of Epoxy Resins, Macromol. Rapid Commun., 2002, 23, 786-790.
  • [23] Saleesung T., Saeoui P., Sirisinha C., Mechanical and Thermal Properties of Thermoplastic Elastomer Based on Low Density Polyethylene and Ultra-fine Fully-vulcanized Acrylonitrile Butadiene Rubber Powder (UFNBRP), Polym. Test., 2010, 29, 977-983.
  • [24] Sae-oui P., Sirisinha C., Intiya W., Thaptong P., Properties of Natural Rubber Filled with Ultrafine Carboxylic Acrylonitrile Butadiene Rubber Powder, Adv. Polym. Tech., 2011, 30(3), 183-190.
  • [25] Ivanov Y.F., Osmonoliev M.N., Sedoi V.S., Productions of Ultra-fine Particles and their Use in High Energetic Compositions, Propellants Explos. Pyrotech., 2003, 28, 319-332.
  • [26] National Military Standard of China, Experimental Methods of Sensitivity and Safety, GJB/772A-97, 1997.
  • [27] Lanzerotti Y.D., Sharma J., Armstrong R.W., Atomic Force Microscopy Studies of Fracture Surfaces of Composition B Energetic Materials, Metall. Mater. Trans. A, 2004, 35A, 2675-2679.
  • [28] Chong K.P., Kuruppu M.D, New Specimen for Fracture Toughness Determination for Rock and Other Materials, Int. J. Fracture, 1984, 26, 59-62.
  • [29] Kuruppu M.D., Chong K.P., Fracture Toughness Testing of Brittle Materials Using Semi-circular Bend (SCB) Specimen, Eng. Fracture Mech., 2012, 91, 133-150.
  • [30] Chen P., Zhou Z., Ma S., Ma Q., Huang F., Measurement of Dynamic Fracture Toughness and Failure Behavior for Explosive Mock Materials, Front. Mech. Eng., 2011, 6, 292-295.
  • [31] Hudson, R.J., Zioupos P., Gill P.P., Investigating the Mechanical Properties of RDX Crystals Using Nano-indentation, Propellants Explos. Pyrotech., 2012, 37, 191-197.
  • [32] Kamlet M.J., Jacobs S.J., Chemistry of Detonations. I. Simple Method for Calculating Detonation Properties of C-H-N-O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [33] Wu X., Simple Method for Calculating Detonation Parameters of Explosives, J. Energ. Mater., 1985, 3, 263-277.
  • [34] Sućeska M., EXPLO5, version 6.01, 2013.
  • [35] Hobbs M.L., Baer M.R, Calibrating the BKW-EOS with a Large Product Species Database and Measured C-J Properties, Proc. Tenth Symp. (Int.) on Detonation, Boston, MA, 1993.
  • [36] Liao J., Dai X., Huang Q., Wen Y., Xiang Y., Reaction Characteristic for Composition B in Drop Hammer Impact Sensitivity Test (in Chinese), Chin. J. Explos. Propellants (Huozhayao Xuebao), 2013, 36, 52-54.
  • [37] Dai X., Xiang Y., Shen C., Study of Drop Hammer Impact Sensitivity for Big-pill Explosives (in Chinese), Explosion and Shock Waves, 2006, 26, 381-384.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac3ce550-2e32-43f3-ac5e-ce1db41a6422
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.