PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wind wave climate of west Spitsbergen : seasonal variability and extreme events

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Waves are the key phenomenon directly influencing coastal morphodynamics. Facing insufficient observations, wind wave climate of the west coast of Spitsbergen can be characterized on the basis of the modelled data. Here we have used the results of spectral wave models: Wave Watch III (WW3) hindcast and WAM in ERA-interim (ERAi) reanalysis. We have observed the presence of seasonal cycle with difference of up to 1 m between significant wave heights in summer and winter. In wave-direction analysis we have noticed the southwestern swell component of remarkably narrow width, thus we expect unidirectional swell impact on the coastline. Extreme events analysis revealed that storms occur mainly in winter, but the most energetic ones (significant wave height of up to 9.5 m) occur in spring and autumn. We have identified positive trends in storms’ frequency (2 storms per decade) and storms’ total duration (4 days per decade) on the south of the study area. More storms can result in the increase of erosion rate on the south-western coasts of Spitsbergen, but this change may be highly dependent on the sea ice characteristics. Wave heights of wind sea and swell are correlated with the relevant atmospheric circulation indices, especially the North Atlantic Oscillation. In the recent decade, the correlation is stronger with WW3 than with ERAi data, at some locations explaining over 50% (over 30%) of the total variance of wind sea (swell) wave heights. In ERAi data, the relationship with circulation indices seems sensitive to the length of the analysis period.
Słowa kluczowe
Czasopismo
Rocznik
Strony
331--343
Opis fizyczny
Bibliogr. 39 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
autor
  • Institute of Oceanography, University of Gdańsk, Gdynia, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
Bibliografia
  • [1] Ardhuin, F., Sutherland, P., Doble, M., Wadhams, P., 2016. Ocean waves across the Arctic: attenuation due to dissipation dominates over scattering for periods longer than 19 s: observed ocean wave attenuation across the arctic. Geophys. Res. Lett. 43 (11), 5775-5783, http://dx.doi.org/10.1002/2016GL068204.
  • [2] Atkinson, D. E., 2005. Observed storminess patterns and trends in the circum-Arctic coastal regime. Geo-Mar. Lett. 25 (2-3), 98-109, http://dx.doi.org/10.1007/s00367-004-0191-0.
  • [3] Bertin, X., Prouteau, E., Letetrel, C., 2013. A significant increase in wave height in the North Atlantic Ocean over the 20th century. Glob. Planet. Change 106, 77-83, http://dx.doi.org/10.1016/j.gloplacha.2013.03.009.
  • [4] Chawla, A., Spindler, D. M., Tolman, H. L., 2013. Validation of a thirty year wave hindcast using the Climate Forecast System Reanalysis winds. Ocean Model. 70, 189-206, http://dx.doi.org/10.1016/j.ocemod.2012.07.005.
  • [5] Cisek, M., Makuch, P., Petelski, T., 2017. Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia 59 (4), 413-421, http://dx.doi.org/10.1016/j.oceano.2017.06.004.
  • [6] Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., Vitart, F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137 (656), 553-597, http://dx.doi.org/10.1002/qj.828.
  • [7] Drange, H., Dokken, T., Furevik, T., Gerdes, R., Berger, W. (Eds.), 2005. The Nordic Seas: An Integrated Perspective Oceanography, Climatology, Biogeochemistry, and Modeling, Geophysical Monograph Series. American Geophys. Union, Washington, D.C., 365 pp.
  • [8] Environmental Modeling Center/Marine Modeling and Analysis Branch, 2016. WW3 hindcast archive [WWW Document], ftp://polar.ncep.noaa.gov/pub/history/waves.
  • [9] Guedes Soares, C., 1984. Representation of double-peaked sea wave spectra. Ocean Eng. 11 (2), 185-207, http://dx.doi.org/10.1016/0029-8018(84)90019-2.
  • [10] Johannessen, O. M., Bengtsson, L., Miles, M. W., Kuzmina, S. I., Semenov, V. A., Alekseev, G. V., Nagurnyi, A. P., Zakharov, V. F., Bobylev, L. P., Pettersson, L. H., Hasselmann, K., Cattle, H. P., 2004. Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A 56 (4), 328-341, http://dx.doi.org/10.1111/j.1600-0870.2004.00060.x.
  • [11] Kruszewski, G., 2012. Ice conditions in Hornsund and adjacent waters (Spitsbergen) during winter season 2010-2011. Probl. Klimatol. Polar. 22, 69-82.
  • [12] Kumar, S. V., Naseef, M. T., 2015. Performance of ERA-Interim wave data in the nearshore waters around India. J. Atmos. Oceanic Technol. 32 (6), 1257-1269, http://dx.doi.org/10.1175/JTECH-D-14-00153.1.
  • [13] Kushnir, Y., Cardone, V. J., Greenwood, J. G., Cane, M. A., 1997. The recent increase in North Atlantic wave heights. J. Climate 10 (8), 2107-2113, http://dx.doi.org/10.1175/1520-0442(1997)010<2107:TRIINA>2.0.CO;2.
  • [14] Kvamstø, N. G., Steinskog, D. J., Stephenson, D. B., Tjøstheim, D. B., 2011. Estimation of trends in extreme melt-season duration at Svalbard. Int. J. Climatol. 32 (14), 2227-2239, http://dx.doi.org/10.1002/joc.3395.
  • [15] Lee, H., 2005. addaxis [WWW Document], http://www.mathworks.com/matlabcentral/fileexchange/9016-addaxis (accessed 14.10.16).
  • [16] National Center for Environmental Prediction, 2016. Northern Hemisphere Teleconnection Patterns [WWW Document], http://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml.
  • [17] National Center for Environmental Prediction, 2016. Climate Data Assimilation System Sea Ice Concentrations, January 1, 1979 to Present [WWW Document], ftp://polar.ncep.noaa.gov/pub/cdas/.
  • [18] Norwegian Meteorological Institute, 2016. Ice Information Portal [WWW Document], http://polarview.met.no/ (accessed 9.6.16).
  • [19] Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., Nilsen, F., 2014. Loss of sea ice during winter north of Svalbard. Tellus A 66 (1), 23933, http://dx.doi.org/10.3402/tellusa.v66.23933.
  • [20] Osuch, M., Wawrzyniak, T., 2016. Inter- and intra-annual changes in air temperature and precipitation in western Spitsbergen. Int. J. Climatol. 37 (7), 3082-3097, http://dx.doi.org/10.1002/joc.4901.
  • [21] Pereira, D., 2014. Wind Rose [WWW Document], http://www.mathworks.com/matlabcentral/fileexchange/47248-wind-rose (accessed 14.10.16).
  • [22] Portilla, J., Ocampo-Torres, F. J., Monbaliu, J., 2009. Spectral partitioning and identification of wind sea and swell. J. Atmos. Ocean. Technol. 26 (1), 107-122, http://dx.doi.org/10.1175/2008JTE-CHO609.1.
  • [23] Przybylak, R., 2003. The Climate of the Arctic, Atmospheric and Oceanographic Sciences Library. Kluwer Acad. Publ., Dordrecht, Boston, 270 pp.
  • [24] Reistad, M., Breivik, Ø., Haakenstad, H., Aarnes, O. J., Furevik, B. R., Bidlot, J.-R., 2011. A high-resolution hindcast of wind and waves for the North Sea, the Norwegian Sea, and the Barents Sea. J. Geophys. Res. 116 (C5), C05019, http://dx.doi.org/10.1029/2010JC006402.
  • [25] Saloranta, T. M., Haugan, P. M., 2001. Interannual variability in the hydrography of Atlantic water northwest of Svalbard. J. Geophys. Res. 106 (C7), 13931-13943, http://dx.doi.org/10.1029/2000JC000478.
  • [26] Semedo, A., Vettor, R., Breivik, Ø., Sterl, A., Reistad, M., Guedes Soares, C., Lima, D., 2015. The wind sea and swell waves climate in the Nordic seas. Ocean Dyn. 65 (2), 223-240, http://dx.doi.org/10.1007/s10236-014-0788-4.
  • [27] Sessford, E. G., Gøril Bæverford, M., Hormes, A., 2015. Terrestrial processes affecting unlithified coastal erosion disparities in central fjords of Svalbard. Polar Res. 34 (1), 24122, http://dx.doi.org/10.3402/polar.v34.24122.
  • [28] Stopa, J. E., Cheung, K. F., 2014. Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Model. 75, 65-83, http://dx.doi.org/10.1016/j.ocemod.2013.12.006.
  • [29] Stopa, J. E., Ardhuin, F., Girard-Ardhuin, F., 2016. Wave climate in the Arctic 1992-2014: seasonality and trends. Cryosphere 10 (4), 1605-1629, http://dx.doi.org/10.5194/tc-10-1605-2016.
  • [30] Styszynska, A., Buchert, L., 2004. The sea ice cover in Hornsund Fjord and its foreshore (SW Spitsbergen) during winter season 2003/2004. In: Styszynska, A., Marsz, A. A. (Eds.), Polish Polar Studies: 30th International Polar Symposium, Gdynia, 2004. Maritime Univ., Gdynia, 369-376.
  • [31] Teena, N. V., Sanil Kumar, V., Sudheesh, K., Sajeev, R., 2012. Statistical analysis on extreme wave height. Nat. Hazards 64 (1), 223-236, http://dx.doi.org/10.1007/s11069-012-0229-y.
  • [32] Thomas, T. J., Dwarakish, G. S., 2015. Numerical wave modelling — a review. Aquatic Proc. 4, 443-448, http://dx.doi.org/10.1016/j.aqpro.2015.02.059.
  • [33] Tolman, H. L., 2014. User Manual and System Documentation of WAVEWATCH III(R) VERSION 4.18 [WWW Document], http://polar.ncep.noaa.gov/waves/wavewatch/manual.v4.18.pdf (accessed 9.5.16).
  • [34] Tuomi, L., Kahma, K. K., Pettersson, H., 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res. 16 (6), 451-472.
  • [35] Wang, X. L., Swail, V. R., 2001. Changes of extreme wave heights in northern hemisphere oceans and related atmospheric circulation regimes. J. Climate 14 (10), 2204-2221, http://dx.doi.org/10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO;2.
  • [36] Young, I. R., Zieger, S., Babanin, A. V., 2011. Global trends in wind speed and wave height. Science 332 (6028), 451-455, http://dx.doi.org/10.1126/science.1197219.
  • [37] Zacharioudaki, A., Korres, G., Perivoliotis, L., 2015. Wave climate of the Hellenic Seas obtained from a wave hindcast for the period 1960-2001. Ocean Dyn. 65 (6), 795-816, http://dx.doi.org/10.1007/s10236-015-0840-z.
  • [38] Zagórski, P., Rodzik, J., Moskalik, M., Strzelecki, M. C., Lim, M., Błaszczyk, M., Promińska, A., Kruszewski, G., Styszyńska, A., Malczewski, A., 2015. Multidecadal (1960-2011) shoreline changes in Isbjørnhamna (Hornsund, Svalbard). Pol. Polar Res. 36 (4), 369-390, http://dx.doi.org/10.1515/popore-2015-0019.
  • [39] Zhao, X., Shen, H. H., Cheng, S., 2015. Modeling ocean wave propagation under sea ice covers. Acta Mech. Sin. Xuebao 31 (1), 1-15, http://dx.doi.org/10.1007/s10409-015-0017-5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac3b0d34-30df-444d-8c9d-d110f342fac8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.