PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofilm jako zagrożenie w zakładach produkcji i przetwarzania żywności

Treść / Zawartość
Warianty tytułu
EN
Biofilm as a threat in food production and processing facilities
Języki publikacji
PL
Abstrakty
PL
Rozwój mikroorganizmów tworzących biofilm na powierzchniach użytkowych w zakładach produkcji i przetwarzania żywności często prowadzi do jej psucia się oraz stanowi poważne zagrożenie dla zdrowia publicznego. Szczególnie niebezpieczne dla zdrowia człowieka są biofilmy wytwarzane przez chorobotwórcze bakterie, takie jak Campylobacter jejuni, patogenne szczepy Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus czy drożdże z rodzaju Candida. Celem artykułu jest przybliżenie czytelnikom wiedzy na temat mechanizmów powstawania biofilmów, zagrożeń wynikających z rozprzestrzeniania się biofilmotwórczych patogenów, a także metod zapobiegania i usuwania biofilmu w zakładach produkcji i przetwórstwa żywności.
EN
The development of biofilm-forming microorganisms on usable surfaces in food production and processing facilities often results in food spoilage and poses a serious threat to public health. Particularly dangerous to human health are biofilms formed by pathogenic bacteria such as Campylobacter jejuni, pathogenic strains of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enterica, Staphylococcus aureus and yeasts of the genus Candida. The purpose of this article is to provide readers with an overview of the mechanisms of biofilm formation, the risks associated with the spread of biofilm-forming pathogens, and methods of biofilm prevention and removal in food production and processing plants.
Rocznik
Tom
Strony
10--15
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy
  • Centralny Instytut Ochrony Pracy - Państwowy Instytut Badawczy
Bibliografia
  • [1] DONLAN, R.M. Biofilms: microbial life on surfaces. Emerging Infectious Diseases. 2002, 8(9): 881-890, doi: 10.3201/eid0809.020063.
  • [2] MUHAMMAD, M.H., et al. Beyond risk: bacterial biofilms and their regulating approaches. Frontiers in Microbiology. 2020, 11: 928, doi: 10.3389/fmicb.2020.00928.
  • [3] TURHAN, E.U., et al. Beneficial biofilm applications in food and agricultural industry. [In:] A. Malik, et al. (eds.). Health and safety aspects of food processing technologies. Springer, 2020, pp. 445-469, doi: 10.1007/978-3-030-24903-8_15.
  • [4] LEROY, F., et al. Functional meat starter cultures for improved sausage fermentation. International Journal of Food Microbiology. 2006, 106(3): 270-285, doi: 10.1016/j.ijfoodmicro.2005.06.027.
  • [5] OBE, T., et al. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. Journal of Applied Poultry Research. 2021, 30(4): 100195, doi: 10.1016/j.japr.2021.100195.
  • [6] Antibiotic resistance threats in the United States 2019. Centres of Disease Control and Prevention (CDC). Atlanta 2019, doi: 10.15620/cdc:82532.
  • [7] ARMBRUSTER, C.R, PARSEK, M.R. New insight into the early stages of biofilm formation. Proceedings of the National Academy of Science of the USA. 2018, 115(17): 4317-4319, doi: 10.1073/pnas.1804084115.
  • [8] GALIÉ, S., et al. Biofilms in the food industry: health aspects and control methods. Frontiers in Microbiology. 2018, 9: 898, doi: 10.3389/ fmicb.2018.00898.
  • [9] WHITEHEAD, K.A., VERRAN, J. Formation, architecture and functionality of microbial biofilms in the food industry. Current Opinion in Food Science. 2015, 2: 84-91, doi: 10.1016/j. cofs.2015.02.003.
  • [10] GIAOURIS, G., et.al. Attachment and biofilm formation by foodborne bacteria in meat processing environments: causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science. 2014, 97(3): 298-309.
  • [11] DOUROU, D., et al. Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. International Journal of Food Microbiology. 2011, 149(3): 262-268.
  • [12] CHEN, A.I., et al. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLOS Pathogens. 2014, 10(10): e1004480.
  • [13] CERCA, N., et al. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Research in Microbiology. 2005, 156(4): 506-514, doi: 10.1016/j. resmic.2005.01.007.
  • [14] DA SILVA FERNANDES, M., KABUKI, D.Y., KUAYE, A.Y. Behavior of Listeria monocytogenes in a multi-species biofi lm with Enterococcus faecalis and Enterococcus faecium and control through sanitation procedures. International Journal of Food Microbiology. 2015, 200: 5-12.
  • [15] MYSZKA, K., CZACZYK, K. Bacterial biofilms on food contact surfaces - a review. Polish Journal of Food and Nutrition Sciences. 2011, 61 (3): 173-180.
  • [16] SANCHEZ-VIZUETE, P., et al. Pathogens protection against the action of disinfectants in multispecies biofilms. Frontiers in Microbiology. 2015, 6: 705. doi: 10.3389/fmicb.2015.00705.
  • [17] WANG, R., et al. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimuriumen hanced bacterial resistance to sanitization due to extracellular polymeric substances. Journal of Food Protection. 2013, 76(9): 1513-1522, doi: 10.4315/0362-028X.JFP-13-077.
  • [18] KART, D., et al. Activity of disinfectants against multispecies biofilms formed by Staphylococcus aureus, Candida albicans and Pseudomonas aeruginosa. Biofouling. 2014 30(3): 377-383, doi: 10.1080/08927014.2013.878333.
  • [19] PARIJS, I., et al. Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms. The ISME Journal. 2018, 12(8): 2061-2075, doi: 10.1038/s41396-018-0146-5.
  • [20] WICAKSONO, W.A., et al. Enhanced survival of multi-species biofilms under stress is promoted by low-abundant but antimicrobial- -resistant keystone species. Journal of Hazardous Materials. 2021, 422: 126836, doi: 10.1016/j. jhazmat.2021.126836.
  • [21] ABEBE, G.M. The role of bacterial biofilm in antibiotic resistance and food contamination. International Journal of Microbiology. 2020, doi: 10.1155/2020/1705814.
  • [22] ZHAO, X., et al. Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. The Royal Society of Chemistry. 2017, 7: 36670-36683.
  • [23] MACIEJEWSKA, M., BAUER, M., DAWGUL, M. Nowoczesne metody zwalczania biofilmu bakteryjnego. Postępy Mikrobiologii. 2016, 55(1): 3-11.
  • [24] WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. WHO, 2015, https://www.who.int/health-topics/food borne-diseases (7.02.2022).
  • [25] Antibiotic resistance, food, and food animals, https://www.cdc.gov/foodsafety/challenges/antibiotic-resistance.html (7.02.2022)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac368534-e246-4087-87ea-7c1642839f90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.