PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Uptake of plastic microbeads by ciliate Paramecium aurelia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microplastics (MPs) are small fraction of plastics that are less than 5 mm in length. They are bountiful and widespread pollutants in the aquatic environment. A wide range of organisms which play an important role in the food web, ingest microplastic particles and transfer them to the higher trophic levels. In this work, ingestion of fluorescent polystyrene beads 2 µm of diameter by ciliated protozoa Paramecium aurelia in different concentrations and times of exposure was studied. We studied also the ingestion and clearance rate as well as formation of food vacuoles. The highest uptake of beads by ciliates reached 1047.2 ± 414.46 particles after 10 min of incubation. Food vacuoles formation reflected the ingestion rate of P. aurelia, which increased at higher beads concentration up to the10th minute of incubation and decreased afterwards. On the contrary, the clearance rate persisted to be higher at low concentration. These findings showed that maximum capacity of microplastics ingestion by paramecia depended on beads concentration and on time of exposure.
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • Jagiellonian University in Kraków, Faculty of Biology, Institute of Environmental Sciences, ul. Gronostajowa 7, 30-387 Kraków, Poland
autor
  • Jagiellonian University in Kraków, Faculty of Biology, Institute of Environmental Sciences, ul. Gronostajowa 7, 30-387 Kraków, Poland
  • University of Applied Sciences in Tarnow, ul. Mickiewicza 8, 33-100 Tarnów, Poland
Bibliografia
  • 1. Thompson RC, Swan SH, Moore CJ, Vom Saal FS. Our plastic age. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1526):1973–1976. https://doi.org/10.1098/rstb.2009.0054.
  • 2. PlasticsEurope. Plastics – the facts 2018; 2018:38. Available at: Plastics_the_facts_2018_AF_web.pdf (plasticseurope.org).
  • 3. Ritchie H, Roser M. Plastic pollution. Our World in Data. 2018;September. Available at: https://ourworldindata.org/plastic-pollution.
  • 4. Cheung PK, Fok L. Characterisation of plastic microbeads in facial scrubs and their estimated emissions in Mainland China. Water Research. 2017;122:53–61. https://doi.org/10.1016/j.watres.2017.05.053.
  • 5. Lutcavage ME, Plotkin P, Witherington B, Lutz PL. Human impacts on sea turtle survival. In: Lutz PL, Musik JA, editors.The biology of sea turtles. Vol. 1. Boca Raton: CRC Press; 1997. p. 387–409. https://doi.org/10.1201/9780203737088.
  • 6. Barreiros JP, Barcelos J. Plastic ingestion by a leatherback turtle Dermochelys coriacea from the Azores (NE Atlantic). Marine Pollution Bulletin. 2001;42(11):1196–1197. https://doi.org/10.1016/S0025-326X(01)00215-6.
  • 7. Moore CJ. Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research. 2008;108(2):131–139. https://doi.org/10.1016/j.envres.2008.07.025.
  • 8. Wang Y, Zhang D, Zhang M, Mu J, Ding G, Mao Z, Cao Y, Jin F, Cong Y, Wang L, Zhang W, Wang J. Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica. Environmental Pollution. 2019;244:715–722. https://doi.org/10.1016/j.envpol.2018.10.024.
  • 9. Botterell ZLR, Beaumont N, Dorrington T, Steinke M, Thompson RC, Lindeque PK. Bioavailability and effects of microplastics on marine zooplankton: A review. Environmental Pollution. 2019;245:98–110. https://doi.org/10.1016/j.envpol.2018.10.065.
  • 10. Fry DM, Fefer SI, Sileo L. (1987). Ingestion of plastic debris by Laysan Albatrosses and Wedge-tailed Shearwaters in the Hawaiian Islands. Marine Pollution Bulletin. 1987;18(6 suppl. B):339–343. https://doi.org/10.1016/S0025-326X(87)80022-X.
  • 11. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS. Microplastic ingestion by zooplankton. Environmental Science and Technology. 2013;47(12):6646– 6655. https://doi.org/10.1021/es400663f.
  • 12. Vroom RJE, Koelmans AA, Besseling E, Halsband C. Aging of microplastics promotes their ingestion by marine zooplankton. Environmental Pollution. 2017;231:987–996. https://doi.org/10.1016/j.envpol.2017.08.088.
  • 13. Eerkes-Medrano D, Thompson RC, Aldridge DC. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research. 2015;75:63–82. https://doi.org/10.1016/j.watres.2015.02.012.
  • 14. Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution. 2013;178:483–492. https://doi.org/10.1016/j.envpol.2013.02.031.
  • 15. Sharma S, Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environmental Science and Pollution Research. 2017;24(27):21530–21547. https://doi.org/10.1007/s11356-017-9910-8.
  • 16. de Sá LC, Oliveira M, Ribeiro F, Rocha TL, Futter MN. Studies of the effects of microplastics on aquatic organisms: what do we know and where should we focus our efforts in the future? Science of the Total Environment. 2018;645:1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207.
  • 17. Peters RH. Methods for the study of feeding, grazing and assimilation by zooplankton. In: Downing JA, Rigler FH, editors. A Manual on methods for the assessment of secondary productivity in fresh waters. 2nd ed. Ocford: Blackwell Scientific; 1984. p. 336–412.
  • 18. Fok AK, Sison BC, Ueno MS, Allen RD. Phagosome formation in Paramecium: effects of solid particles. Journal of Cell Science. 1988;90(Pt 3):517–524.
  • 19. Berger JD, Pollock C. Kinetics of food vacuole accumulation and loss in Paramecium tetraurelia. Transactions of the American Microscopical Society. 1981;100(2):120–133.
  • 20. Ramoino P. Changes in the rate of food vacuole formation during early clonal life of paramecium primaurelia. Bolletino Di Zoologia. 1993;60(2):143–146. https://doi.org/10.1080/11250009309355803.
  • 21. Ali TH, Saleh DS. A simplified experimental model for clearance of some pathogenic bacteria using common bacterivorous ciliated spp. in Tigris river. Applied Water Science. 2014;4(1):63–71. https://doi.org/10.1007/s13201-013-0130-1.
  • 22. Fenchel T. Suspension feeding in, Ciliated Protozoa: structure and function of feeding organelles. Archiv für Protistenkunde. 1980;123(3):239–260. https://doi.org/10.1016/S0003-9365(80)80009-
  • 23. Mueller M, Röhlich P, Törö I. Studies on feeding and digestion in Protozoa. VII. Ingestion of polystyrene latex particles and its early effect on Acid Phosphatase in Paramecium multimicronucleatum and Tetrahymena pyriformis. The Journal of Protozoology. 1965;12(1):27–34. https://doi.org/10.1111/j.1550-7408.1965.tb01807.x.
  • 24. Bragg AN. Selection of Food in Paramecium trichium. Physiological Zoology. 1936;9(4):433–442. http://www.jstor.org/stable/30151388.
  • 25. Snell TW, Hicks DG. Assessing toxicity of nanoparticles using Brachionus manjavacas (Rotifera). Environmental Toxicology. 2011;26(2):146–152. https://doi.org/10.1002/tox.20538.
  • 26. Jeong CB, Won EJ, Kang HM, Lee MC, Hwang DS, Hwang UK, Zhou B, Souissi S, Lee SJ, Lee JS. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont Rotifer (Brachionus koreanus). Environmental Science and Technology. 2016;50(16):8849–8857. https://doi.org/10.1021/acs.est.6b01441.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac361eaa-d9da-48e7-baa5-42c5c65118b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.