PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Significance of reagents addition sequence on iron anionic reverse flotation and their adsorption characteristics using QCM-D

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To explore the influence of reagents addition sequence of the pH regulator and the starch depressant on the anionic reverse flotation of iron oxide, flotation conditional experiments were performed on mixed low-intensity and high-gradient magnetic concentrates which is the flotation feed acquired from the iron processing plant. Besides, quartz crystal micro-balance with dissipative (QCM-D) was conducted to detect the adsorption phenomena of the flotation reagent on iron oxide sensors at different addition orders. The outcomes showed that the flotation performance using the pH regulator prior to the depressant was the best. For example, at 1.6 kg/Mg starch dosage, the recovery and separation efficiencies were improved by 18.3% and 21.2%, respectively, with keeping the concentrate Fe grade as high as 69.5%. Also, QCM-D frequency shifted by -41 Hz from 17 Hz to -24 Hz with increased dissipation from -2.6 x 10-6 to 8.2 x 10-6, indicating an increase in the mass of slightly-rigid starch adsorption layer on the surface of iron oxide under a strong alkaline condition with adsorption density of about 0.46 mg/cm2. On the other hand, under weak alkaline conditions, starch was adsorbed, and then the starch was desorbed upon the addition of the strong alkaline solution. Whereas, adding the pH modifier to create a strong alkaline condition enhanced the starch adsorption significantly with coordination and hydrogen bonds, and prevented the following adsorption of the anionic collector for more efficient reverse flotation of iron oxide minerals.
Słowa kluczowe
Rocznik
Strony
284--293
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
  • Mining Engineering, University of Science and Technology Liaoning
autor
  • School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255049, China
  • Central Metallurgical Research and Development Institute
autor
  • Chemical Engineering, University of Science and Technology Liaoning
Bibliografia
  • BHAGYALAXMI, K., HRUSHIKESH, S., SWAGAT, S.R., DAS, B., 2103. Investigations on different starches as depressants for iron ore flotation. Minerals Engineering, 49, 1-6.
  • BOUCHET-SPINELLI, A., COCHE-GUERENTE, L., ARMAND, S., LENOUVEL, F., LABBE, P., FORT, S., 2013. Functional characterization of starch-degrading enzymes using quartz crystal microbalance with dissipation monitoring (QCM-D). Sensors and Actuators B: Chemical, 176, 1038–1043.
  • BUTT, H.J., CAPPELLA, B., KAPPL, K., 2005. Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface Science Reports, 59(1–6), 1-152.
  • CLEGG, J., LUDOLPH, C.M., PEPPAS, N.A., 2019. QCM-D assay for quantifying the swelling, biodegradation, and protein adsorption of intelligent nanogels. Journal of Applied Polymer Science, 137(25), 48655.
  • FILIPPOV, L.O., SEVEROV, V.V., FILIPPOVA, I.V., 2014. An overview of the beneficiation of iron ores via reverse cationic flotation. International Journal of Mineral Processing, 127, 62-69.
  • HODGES, C.S., HARBOTTLE, D., BIGGS, S., 2020. Investigating adsorbing viscoelastic fluids using the quartz crystal microbalance. American Chemical Society ACS Omega, 5(35), 22081–22090.
  • ISHIKAWA, A., YOSHIOKA, T., SATO, T., OKUWAKI, A., 1997. Solubility of hematite in LiOH, NaOH and KOH solutions. Hydrometallurgy, 45(1–2), 129-135.
  • KONRADI, R., TEXTOR, M., REIMHULT, E., 2012. Using complementary acoustic and optical techniques for quantitative monitoring of biomolecular adsorption at interfaces. Biosensors, 2(4), 341-376.
  • LIN, Y., HUANG, Q., SU, Z., 2010. Interaction between protein and polysaccharide studied by QCM-D[J]. Chinese Journal of Applied Chemistry, 27(5): 505-509.
  • LU, D., HU, Y., LI, Y., JIANG, T., SUN, W., WAND, Y., 2017. Reverse flotation of ultrafine magnetic concentrate by using mixed anionic/cationic collectors. Physicochemical Problems of Mineral Processing, 53(2), 724-736.
  • QUAST, K., 2017. Literature review on the use of natural products in the flotation of iron oxide ores. Minerals Engineering, 108, 12–24.
  • MA, M., 2012. Froth flotation of iron ores. International Journal of Mining Engineering and Mineral Processing, 1(2), 56-61.
  • REN, A.J., SUN, C.Y., 2018. Effect of modified starches on floatability of hematite and quartz using sodium oleate as collector. Mining and Metallurgy. 27(3), 1-12 (In Chinese). SAKAI K., 2019. Quartz crystal microbalance with dissipation monitoring (QCM-D). In: Abe M. (eds) Measurement Techniques and Practices of Colloid and Interface Phenomena. Springer, Singapore.
  • SAFTICS, A., PROSZ, G., TURK, B. PETER, B., KURUNCZI, S., HORVATH, R., 2018. In situ viscoelastic properties and chain conformations of heavily hydrated carboxymethyl dextran layers: a comparative study using OWLS and QCMI chips coated with waveguide material. Scientific Report, 8, 11840.
  • SYLVESTER, P.J., 2012. Chapter 1: Use of the mineral liberation analyzer (MLA) for mineralogical studies of sediments and sedimentary rocks. Mineralogical Association of Canada Short Course 42, St. John’s NL, May 2012, 1-16. https://www.researchgate.net/publication/240305728_Use_of_the_Mineral_Liberation_Analyzer_MLA_for_mineralogical_studies_of_sediments_and_sedimentary_rocks
  • TAO, D., WU, Z., SOBHY, A., 2021. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder Technology, 379, 12-25.
  • TOHRY, A., DEHGHAN, R., CHELGANI, S.C., ROSENKRANZ, J., RAHMANI, O.A., 2019. Selective separation of hematite by a synthesized depressant in various scales of anionic reverse flotation. Minerals, 9(2), 124.
  • VELOSO, C.H., FILIPPOV, L.O., FILIPPOVA, I.V., ARAUJO, A.C., 2018. Investigation of the interaction mechanism of depressants in the reverse cationic flotation of complex iron ores. Minerals Engineering, 125, 133–139.
  • VIJAYAKUMAR, T.V., RAO, D.S., RAO, S.S., PRABHAKAR, S., RAJU, G.B., 2010. Reverse flotation studies on an Indian low grade iron ore slimes. International Journal of Engineering Science and Technology, 2(4), 637-648.
  • WANG, S., ALAGHA, L., XU, Z., 2014. Adsorption of organic–inorganic hybrid polymers on kaolin from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 453, 13-20.
  • WEISSENBORN, P.K., 1996. Behaviour of amylopectin and amylose components of starch in the selective flocculation of ultrafine iron ore. International Journal of Mineral Processing, 47(3–4), 197-211.
  • YANG, S., WANG, L., 2018. Structural and functional insights into starches as depressant for hematite flotation. Minerals Engineering, 124, 149–157.
  • YANG, S., LI, C., WANG, L., 2017. Dissolution of starch and its role in the flotation separation of quartz from hematite. Powder Technology, 320, 346-357.
  • ZHANG, M., PAN, G., ZHAO, D., HE, G., 2011. XAFS study of starch-stabilized magnetite nanoparticles and surface speciation of arsenate. Environmental Pollution 159, 3509-3514.
  • ZHANG, Y., HE, Y., ZHANG, T., ZHU, X., FENG, Y., ZHANG, G., BAI, X., 2018. Application of Falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries. Journal of Cleaner Production, 202, 736-747
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac353eb7-199f-4462-b84e-db69b96e9c13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.