PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie recyklingu materiałowego w produkcji wypełnień aktywnych i określenie ich skuteczności podczas beztlenowego oczyszczania ścieków mleczarskich

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Application of recycling materials for active fillings production and determination of their effectiveness in the anaerobic treatment of dairy wastewater
Języki publikacji
PL
Abstrakty
PL
Dynamiczny rozwój sektora mleczarskiego powoduje wzrost ilości wysoko obciążonych ścieków oraz wymusza konieczność ciągłego poszukiwania skutecznych metod ich oczyszczania. Coraz większą popularność zdobywają technologie beztlenowe, których jedną ze słabych stron jest ograniczona efektywność usuwania związków biogennych. Celem badań było określenie efektywności zastosowania wypełnienia, wytworzonego z odpadów do beztlenowego oczyszczania ścieków mleczarskich. Stwierdzono pozytywny wpływ tego rozwiązania na sprawność usuwania ChZT (86,1±2,6% - 92,8±1,6%) oraz Pog. (22,1±3,5% do 36,9±4,6%). Obserwowano również wydajną produkcję metanu w reaktorach z wypełnieniem, która w wariancie najwydajniejszym wynosiła 0,24±0,01 m3/kgChZTus.
EN
The dynamic development of the dairy sector causes an increase in the amount of highly loaded wastewater and forces the necessity to constantly search for effective methods of their treatment. Anaerobic technologies are gaining more and more popularity, one of the weaknesses of which is the limited efficiency of removing biogenic compounds. The aim of the research was to determine the effectiveness of the use of filling made of waste for the anaerobic treatment of dairy wastewater. A positive effect of this solution was found on the efficiency of COD removal (86.1±2.6% – 92.8±1.6%) and Ptot. (22.1±3.5% to 36.9±4.6%). Efficient production of methane in packed reactors was also observed, which in the most efficient variant was 0.24 ± 0.01 m3/ kgCODrem.
Rocznik
Tom
Strony
29--35
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Katedra Inżynierii Środowiska, Instytut Inżynierii i Ochrony Środowiska, Wydział Geoinżynierii, Uniwersytet Warmińsko-Mazurski w Olsztynie, 10-720 Olsztyn, Polska
  • Katedra Wodociągów i Kanalizacji, Instytut Inżynierii Środowiska i Energetyki, Wydział Budownictwa i Nauk o Środowisku, Politechnika Białostocka, 15-351 Białystok, Polska
  • Katedra Inżynierii Środowiska, Instytut Inżynierii i Ochrony Środowiska, Wydział Geoinżynierii, Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn, Polska
Bibliografia
  • [1] Ai Sijia, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. 2018. “Roles of Acid-Producing Bacteria in Anaerobic Digestion of Waste Activated Sludge”. Frontiers of Environmental Science & Engineering. 12(6): 1-11. https://doi.org/10.1007/S11783-018-1050-Y.
  • [2] Akhiar Afifi, Felipe Guilayn, Michel Torrijos, Audrey Battimelli, Abd Halim Shamsuddin, Hélène Carrère. 2021. “Correlations between the Composition of Liquid Fraction of Full-Scale Digestates and Process Conditions”. Energies. 14(4): 971. https://doi.org/10.3390/EN14040971.
  • [3] Ashraf Adil, Racchana Ramamurthy, Eldon R. Rene. 2021. “Wastewater Treatment and Resource Recovery Technologies in the Brewery Industry: CurrentTrends and Emerging Practices”. Sustainable Energy Technologies and Assessments. 47: 101432. https://doi.org/10.1016/J.SETA.2021.101432.
  • [4] Aziz Asad, Farrukh Basheer, Ashish Sengar, Irfanullah, Saif Ullah Khan, Izharul Haq Farooqi. 2019. “Biological Wastewater Treatment (Anaerobic-Aerobic) Technologies for Safe Discharge of Treated Slaughterhouse and Meat Processing Wastewater”. Science of The Total Environment. 686: 681-708. https://doi.org/10.1016/J.SCITOTENV.2019.05.295.
  • [5] Chuda Aleksandra, Krzysztof Ziemiński. 2021. “Challenges in Treatment of Digestate Liquid Fraction from Biogas Plant. Performance of Nitrogen Removal and Microbial Activity in Activated Sludge Process”. Energies. 14(21): 7321. https://doi.org/10.3390/EN14217321.
  • [6] Cristina G., E. Camelin, S. Fraterrigo Garofalo, F. Salomone, M. Pugliese, M. L. Gullino, T. Tommasi, D. Fino. 2022. “Time-Based Evaluation of Bioavailable Phosphorus in a Calcareous Soil after the Application of Anaerobically Digested Sewage Sludge”. Biomass Conversion and Biorefinery. 1: 1-13. https://doi.org/10.1007/S13399-022-02315-5/FIGURES/7.
  • [7] Dębowski Marcin, Marcin Zieliński, Joanna Kazimierowicz. 2022. “Anaerobic Reactor Filling for Phosphorus Removal by Metal Dissolution Method”. Materials. 15(6): 2263. https://doi.org/10.3390/MA15062263.
  • [8] Dębowski Marcin, Marcin Zieliński, Marta Kisielewska, Joanna Kazimierowicz. 2020. “Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor”. Energies. 13(9): 2392. https://doi.org/10.3390/EN13092392.
  • [9] Dębowski Marcin, Marcin Zieliński, Marta Kisielewska, Mirosław Krzemieniewski, Monika Makowska, Marian Grądkowski, Aneta Tor-Świątek. 2018. “Simulated Dairy Wastewater Treatment In A Pilot Plant Scale Magneto-Active Hybrid Anaerobic Biofilm Reactor (MA-HABR)”. Brazilian Journal of Chemical Engineering. 35(2): 553-62. https://doi.org/10.1590/0104-6632.20180352S20170036.
  • [10] Food and Agriculture Organization of the United Nations. 2020. “Dairy Market Review, March, 2020”. http://www.fao.org/3/ca8341en/CA8341EN.pdf.
  • [11] Ji Siping, Wuyi Ma, Qianwen Wei, Weishi Zhang, Fengzhi Jiang, Jing Chen. 2020. “Integrated ABR and UASB System for Dairy Wastewater Treatment: Engineering Design and Practice”. Science of The Total Environment. 749: 142267. https://doi.org/10.1016/J.SCITOTENV.2020.142267.
  • [12] Jiao Chengfan, Yisong Hu, Xiaoling Zhang, Ruosong Jing, Ting Zeng, Rong Chen, Yu-You Li. 2022. “Process Characteristics and Energy Self-Sufficient Operation of a Low-Fouling Anaerobic Dynamic Membrane Bioreactor for up-Concentrated Municipal Wastewater Treatment”. Science of The Total Environment. 843: 156992. https://doi.org/10.1016/J.SCITOTENV.2022.156992.
  • [13] Karolinczak Beata, Wojciech Dąbrowski, Radosław Żyłka. 2021. “Evaluation of Dairy Wastewater Treatment Systems Using Carbon Footprint Analysis.” Energies. 14(17): 5366. https://doi.org/10.3390/EN14175366.
  • [14] Kaur Navneet. 2021. “Different Treatment Techniques of Dairy Wastewater”. Groundwater for Sustainable Development. 14: 100640. https://doi.org/10.1016/J.GSD.2021.100640.
  • [15] Kisielewska Marta, Marcin Zieliński, Marcin Dębowski, Joanna Kazimierowicz, Zdzisława Romanowska-Duda, Magda Dudek. 2020. “Effectiveness of Scenedesmus Sp. Biomass Grow and Nutrients Removal from Liquid Phase of Digestates”. Energies. 13(6): 1432. https://doi.org/10.3390/EN13061432.
  • [16] Kong Zhe, Jiang Wu, Chao Rong, Tianjie Wang, Lu Li, Zibin Luo, Jiayuan Ji, et al. 2021. “Large Pilot-Scale Submerged Anaerobic Membrane Bioreactor for the Treatment of Municipal Wastewater and Biogas Production at 25 °C”. Bioresource Technology. 319: 124123. https://doi.org/10.1016/J.BIORTECH.2020.124123.
  • [17] Kundu K., I. Bergmann, S. Hahnke, M. Klocke, S. Sharma, T. R. Sreekrishnan. 2013. “Carbon Source - A Strong Determinant of Microbial Community Structure and Performance of an Anaerobic Reactor”. Journal of Biotechnology. 168(4): 616-24. https://doi.org/10.1016/J.JBIOTEC.2013.08.023.
  • [18] Lee Hyung Sool, Youneng Tang, Bruce E. Rittmann, He Ping Zhao. 2018. “Anaerobic Oxidation of Methane Coupled to Denitrification: Fundamentals, Challenges, and Potential”. Critical Reviews in Environmental Science and Technology. 48(19-21): 1067-93. https://doi.org/10.1080/10643389.2018.1503927.
  • [19] Li Lin, Heliang Pang, Junguo He, Jie Zhang. 2019. “Characterization of Phosphorus Species Distribution in Waste Activated Sludge after Anaerobic Digestion and Chemical Precipitation with Fe3+ and Mg2+”. Chemical Engineering Journal. 373: 1279-85. https://doi.org/10.1016/J.CEJ.2019.05.146.
  • [20] Lin Richen, Jun Cheng, Zongbo Yang, Lingkan Ding, Jiabei Zhang, Junhu Zhou, Kefa Cen. 2016. “Enhanced Energy Recovery from Cassava Ethanol Wastewater through Sequential Dark Hydrogen, Photo Hydrogen and Methane Fermentation Combined with Ammonium Removal”. Bioresource Technology. 214: 686-91. https://doi.org/10.1016/J.BIORTECH.2016.05.037.
  • [21] Liu Xuyan, Hong Yang, Jiang Chang, Yongsheng Bai, Luyuan Shi, Bojun Su, Jun Han, Duo Liang. 2022. “Re-Hydrolysis Characteristics of Alkaline Fermentation Liquid from Waste Activated Sludge: Feasibility as a Carbon Source for Nitrogen Removal”. Process Safety and Environmental Protection. 165: 230-40. https://doi.org/10.1016/J.PSEP.2022.06.064.
  • [22] Lu Yongze, Xin Li, Yue Chen, Yongzhen Wang, Guangcan Zhu, Raymond Jianxiong Zeng. 2020. “The Indispensable Role of Assimilation in Methane Driven Nitrate Removal”. Science of The Total Environment. 746: 141089. https://doi.org/10.1016/J.SCITOTENV.2020.141089.
  • [23] Ma Haiyuan, Yan Guo, Yu Qin, Yu You Li. 2018. “Nutrient Recovery Technologies Integrated with Energy Recovery by Waste Biomass Anaerobic Digestion”. Bioresource Technology. 269: 520-31. https://doi.org/10.1016/J.BIORTECH.2018.08.114.
  • [24] OECD-FAO. 2020. “OECD-FAO Agricultural Outlook 2020–2029”. Rome, Italy.
  • [25] Preisner M., E. Neverova-Dziopak, Z. Kowalewski. 2020. “Analysis of Eutrophication Potential of Municipal Wastewater”. Water Science and Technology. 81(9): 1994-2003. https://doi.org/10.2166/WST.2020.254.
  • [26] Purushothaman K. H. M. Jena. 2020. “Biological Treatment of Synthetic Dairy Wastewater in FBBR”. J. Indian Chem. Soc. 97(12b): 2847-53.
  • [27] Sathya K., K. Nagarajan, G. Carlin Geor Malar, S. Rajalakshmi, P. Raja Lakshmi. 2022. “A Comprehensive Review on Comparison among Effluent Treatment Methods and Modern Methods of Treatment of Industrial Wastewater Effluent from Different Sources”. Applied Water Science. 12(4): 1-27. https://doi.org/10.1007/S13201-022-01594-7.
  • [28] Sinha Surbhi, Abhinav Srivastava, Tithi Mehrotra, Rachana Singh. 2019. “A Review on the Dairy Industry Waste Water Characteristics, Its Impact on Environment and Treatment Possibilities”. Emerging Issues in Ecology and Environmental Science. 73-84. https://doi.org/10.1007/978-3-319-99398-0_6/COVER/.
  • [29] Sperling Marcos von, Paulo G. S. Almeida, Thiago Bressani-Ribeiro, Carlos A. L. Chernicharo. 2019. “Post-Treatment of Anaerobic Effluents”. Anaerobic Reactors for Sewage Treatment: Design, Construction and Operation: 275-338. https://doi.org/10.2166/9781780409238_0275.
  • [30] Szwarc Karolina, Dawid Szwarc, Marcin Zieliński. 2020. “Removal of Biogenic Compounds from the Post-Fermentation Effluent in a Culture of Chlorella Vulgaris”. Environmental Science and Pollution Research. 27(1): 111-17. https://doi.org/10.1007/S11356-019-05162-6/FIGURES/4.
  • [31] Toyama Tadashi, Tsubasa Hanaoka, Yasuhiro Tanaka, Masaaki Morikawa, Kazuhiro Mori. 2018. “Comprehensive Evaluation of Nitrogen Removal Rate and Biomass, Ethanol, and Methane Production Yields by Combination of Four Major Duckweeds and Three Types of Wastewater Effluent”. Bioresource Technology. 250: 464-73. https://doi.org/10.1016/J.BIORTECH.2017.11.054.
  • [32] Zhang Meijia, Kam Tin Leung, Hongjun Lin, Baoqiang Liao. 2021. “Effects of Solids Retention Time on the Biological Performance of a Novel Microalgal-Bacterial Membrane Photobioreactor for Industrial Wastewater Treatment”. Journal of Environmental Chemical Engineering. 9(4): 105500. https://doi.org/10.1016/J.JECE.2021.105500.
  • [33] Zhao Shunan, Ping Li, Hongli Fang, Liuying Song, Dunjie Li, Rutao Liu, Qigui Niu. 2020. “Enhancement Methane Fermentation of Enteromorpha Prolifera Waste by Saccharomyces Cerevisiae: Batch Kinetic Investigation, Dissolved Organic Matter Characterization, and Synergistic Mechanism”. Environmental Science and Pollution Research. 27(14): 16254-67. https://doi.org/10.1007/S11356-020-08013-X/FIGURES/6.
  • [34] Zhen Xiaofei, Miao Luo, Zhenggui Li, Zhimin Lin, Yongheng Zhang, Lei Feng, Jian kang. 2022. “The Sustainable Utilization of Anaerobic Digestion Effluents Treating in Suspended Filler Algae Assisted Systems”. Sustainable Energy Technologies and Assessments. 53: 102354. https://doi.org/10.1016/J.SETA.2022.102354.
  • [35] Zielińska Magdalena, Marcin Zieliński, Marcin Dębowski. 2017. “Organic Compounds and Phosphorus Removal from Dairy Wastewater by Biofilm on Iron-Containing Supports”. Journal of Environmental Engineering 144(1): 04017087. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001309.
  • [36] Zieliński Marcin, Marcin Dębowski, Mirosław Krzemieniewski, Andrzej Brudniak, Marta Kisielewska. 2016. “Possibility of Improving Technological Effectiveness of Dairy Wastewater Treatment through Application of Active Fillings and Microwave Rabiation”. Химия и Технология Воды 38(6): 618-27. http://dspace.nbuv.gov.ua/handle/123456789/160860.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac3303af-7fbd-45c9-a6ac-ac0b677115fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.