PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A nanoparticle cationic polystyrene-co-poly(n-butylacrylate) collector to eliminate the negative effect of lizardite slimes in pyrite flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lizardite slime coating is one of significant factors in the deterioration of the floatability of sulphide minerals. In this study, a nanoparticle cationic polystyrene-co-poly(n-butylacrylate)(PS-PBNH) collector was introduced to eliminate the negative impact of lizardite slimes in pyrite flotation. Microflotation results demonstrated that lizardite slims did not affect the recovery of pyrite in the presence of PS-PBNH. Good flotation separation of pyrite from lizardite was achieved when the nanoparticle PS-PBNH collector was used. The results from adsorption study indicated that PS-PBNH exhibited a significant adsorption on the pyrite surface in the presence of lizardite slimes. Sedimentation tests showed that hetero-aggregation occurred between lizardite slimes and pyrite, whereas the introduction of PS-PBNH collector resulted in a heterogeneous dispersion between them. Zeta potential measurements suggested that PS-PBNH collector interacted with pyrite surface, and the PS-PBNH adsorption changed the surface charge of pyrite from negative to be positive. As a result, the interaction of pyrite with lizardite shifted from electrostatic attraction to electrostatic repulsion, as supported by the DLVO calculations. These results indicated PS-PBNH can be used as a potential collector for pyrite flotation in pyrite/lizardite slimes system without the need for a depressant.
Rocznik
Strony
art. no. 170899
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
  • School of Resource and Environment Engineering, Jiangxi University of Science and Technology, Ganzhou 34100, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
  • Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, China
autor
  • Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
  • Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan, Hubei 430070, China
Bibliografia
  • ABARCA C, YANG S, PELTON R. 2015. Towards high throughput screening of nanoparticle flotation collectors. J. Colloid Interface Sci. 460, 97-104.
  • ADEBAYO, G., ZHANABERGENOV, Z., ERNAZAROV, U., BADMUS, B., ANUSIONWU, B., 2014. First principles study of electronic structure, structural and optical properties of Mg3Si2O5(OH)4. Appl. Clay Sci. 93-94, 8-11.
  • AI, G., HUANG K., LIU C., YANG S., 2021. Exploration of amino trimethylene phosphonic acid to eliminate the adverse effect of seawater in molybdenite flotation. Int. J. Min. Sci. Technol. 31(6), 1129-1134.
  • BAILEY, S., 1988. Polytypism of 1:1 layer silicates. Reviews in Mineralogy and Geochemistry. 19(1), 9-27.
  • BREMMELL, K., FORNASIERO, D., RALSTON, J., 2005. Pentlandite–lizardite interactions and implications for their separation by flotation. Colloids Surf. A Physicochem. Eng. Asp. 252, 207-212.
  • DENG, J., YANG, S., ZHANG, W., LIU, C., LI, H., 2020. The effect of lizardite on talc flotation using carboxymethyl cellulose as a depressant. Physicochem. Probl. Miner. Process. 56(4),702–709
  • DERJAGUIN, B., LANDAU, L., 1993. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog. Surf. Sci. 1993, 43: 30-59.
  • DONG, X., MARWAY, H., CRANSTON, E., 2016. Pelton RH. Relating nanoparticle shape and adhesiveness to performance as flotation collectors. Ind. Eng. Chem. Res. 55(36), 9633–9638.
  • EVANS, B., HATTORI, K., BARONNET, A., 2013. Serpentinite: what, why, where?. Elements, 9(2), 99-106.
  • FENG B, LU Y, LUO X, 2015. The effect of quartz on the flotation of pyrite depressed by serpentine. Journal of Materials Research and Technol. 4(1), 8-13.
  • FENG, B., PENG J., ZHANG, W., LUO, G., WANG, H., 2018. Removal behavior of slime from pentlandite surfaces and its effect on flotation, Miner. Eng. 125, 150-154.
  • FENG, B., LU, Y., FENG, Q., LI, H., 2012. Solution chemistry of sodium silicate and implications for pyrite flotation. Ind. Eng. Chem. Res. 51(37), 12089-12094.
  • FENG, B., LUO, X., 2013. The solution chemistry of carbonate and implications for pyrite flotation, Miner. Eng. 53, 181-183.
  • FROST, B., EVANS, K., SWAPP, S., BEARD, J., MOTHERSOLE, F., 2013. The process of serpentinization in dunite from New Caledonia. Lithos. 178, 24-39.
  • GREGORY J.,1975. Interaction of unequal double layers at constant charge. J. Colloid Interface Sci. 51 (1), 44-51.
  • KUSUMA, A., LIU, Q., ZENG, H., 2014. Understanding interaction mechanisms between pentlandite and gangue minerals by zeta potential and surface force, Miner. Eng. 2014, 69, 15-23.
  • LIU, C., AI, G., SONG, S., 2018a. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite. Powder Technol. 336, 527-532.
  • LIU, C., CHEN, Y., SONG, S., LI, H., 2018b. The effect of aluminum ions on the flotation separation of pentlandite from lizardite. Colloids Surf. A Physicochem. Eng. Asp. 555, 708-712.
  • LIU, C., ZHEN, Y., YANG, S., FU, W., CHEN, X., 2021. Exploration of a novel depressant polyepoxysuccinic acid for the flotation separation of pentlandite from lizardite slimes. Appl. Clay Sci. 202, 105939.
  • MAO, Y., XIA, W., PENG Y., XIE, G., 2022. Dynamic pore wetting and its effects on porous particle flotation: A review. Int. J. Min. Sci. Technol. 32(6), 1365-1378.
  • O'HANLEY D., 1996. Serpentinites:Records of Tectonic and Petrological History. New York: Oxford University Press.
  • SIROTA, V., SELEMENEV, V., KOVALEVA, M., PAVLENKO, I., MAMUNIN, K., DOKALOV, V., YAPRYNTSEV, M., 2018. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. Int. J. Min. Sci. Technol. 28(3), 499-503.
  • TANG, X., CHEN, Y., 2022. A review of flotation and selective separation of pyrrhotite: A perspective from crystal structures. Int. J. Min. Sci. Technol. 32(4), 847-863.
  • WICKS, F., WHITTAKER, E., 1975. A reappraisal of the structures of the serpentine minerals. The Canadian Mineralogist. 13(3), 227-243.
  • VOGIATZIS, G., THEODOROU, D., 2013. Structure of polymer layers grafted to nanoparticles in silica‐polystyrene nanocomposites. Macromolecules 46, 4670-4683.
  • YANG, H., QIU, X., YAN, H., WU, H., YANG, L., LAI, R., QIU, T., 2022. Investigating the selectivity of calcium hypochlorite for flotation separation of chalcopyrite and pyrite pre-adsorbed collector. Physicochem. Probl. Miner. Process. 58(4), 150703.
  • YANG, S., XU, Y., LIU, C., AI, G., YU, H., 2020. A novel method to achieve the flotation of pyrite from lizardite slime without collector or depressant. Miner. Eng. 157(12), 106580.
  • YANG, S., PELTON, R., RAEGEN, A., MONTGOMERT, M., DALNOKI-VERESS, K., 2011. Nanoparticle flotation collectors: mechanisms behind a new technology. Langmuir: 27(17), 10438-10446.
  • YANG S, PELTON R., 2011. Nanoparticle flotation collectors II: The role of nanoparticle hydrophobicity. Langmuir, 27, 11409-11415.
  • YANG, S., PELTON, R., ABARCA, C., DAI, Z., MONTGOMERT, M., XU M, BOS, J., 2013. Towards nanoparticle flotation collectors for pentlandite separation. Int. J. Miner. Process. 2013, 123, 137-144.
  • YANG, S., PELTON, R., MONTGOMERY, M., CUI Y., 2012. Nanoparticle flotation collectors iii: the role of nanoparticle diameter. Acs Applied Materials & Interfaces, 2012, 4(9), 4882-4890.
  • YANG, S., XIE, B., LU, Y., LI, C., 2018. Role of magnesium-bearing silicates in the flotation of pyrite in the presence of serpentine slimes. Powder Technol. 332, 1-7.
  • YUAN, J., DING, Z., BI, Y., LI, J., WEN, S., BAI, S., 2022. An innovative flotation technology for the lime-depressed pyrite recovery from copper sulfide ore via acid mine drainage (AMD) activation. Physicochem. Probl. Miner. Process. 58(6), 152609.
  • YU, X., HU, L., LIU, C., WANG, L., LI, H., XUE, L., 2019. The effect of 2-phosphonobutane-1,2,4-tricarboxylic acid on the flotation separation of pyrite from lizardite. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, :317-321.
  • ZHANG, C., LIU, C., FENG, Q., CHEN, Y., 2017. Utilization of N-carboxymethyl chitosan as selective depressants for serpentine on the flotation of pyrite. Int. J. Miner. Process. 163, 45-47.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac2ff273-ec29-43e0-9af4-b4778daac125
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.