PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conjugate heat transfer analysis of the tip seal in the counter rotating low pressure turbine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to examine the phenomena associated with leakage flow through the tip seal with honeycomb land and to perform conjugate heat transfer (CHT) analysis of the entire tip area of the blade including the part of casing with rotating cavity above the seal. CFD analyses were performed using commercial software. For the complicated geometrical configuration of the seal region, a calculation model was proposed which enabled a satisfactory approach to flow and heat transfer phenomena. CHT analyses were performed for two cases characterized by different thermal conductivity of the metal. Fluid flow parameters which allowed to recognize flow structures, losses and mixing were taken into account. In CHT analyses, the flow structures for the cavity, the heat transfer conditions as well as the temperature distribution in the whole domain were obtained.
Słowa kluczowe
Rocznik
Strony
253--270
Opis fizyczny
Bibliogr. 20 poz., rys. kolor.
Twórcy
autor
  • Institute of Power Engineering and Turbomachinery Silesian University of Technology Konarskiego 18, 44-100 Gliwice, Poland
  • Institute of Power Engineering and Turbomachinery Silesian University of Technology Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • 1. D. Cherry, A. Wadia, R. Beacock, M. Subramanian, P. Vitt, Analytical Investigation of a low pressure turbine with and without flowpath endwall gaps, seals and clearance features, ASME Paper GT2005-68492, 2005.
  • 2. A.D. Vakili, A.J. Meganathan, M. Michaud, S. Radhakrishnan, An experimental and numerical study of labyrinth seal flow, ASME Paper GT2005-68224, 2005.
  • 3. B. Rosic, J.D. Denton, The control of shroud leakage loss by reducing circumferential mixing, ASME Paper GT2006-90946, 2006.
  • 4. J.E. Anker, J.F. Mayer, Simulation of the interaction of labyrinth seal leakage flow and main flow in an axial turbine, ASME Paper GT2002-30348, 2002.
  • 5. A. Giboni, K. Wolter, J.R. Menter, H. Pfost, Experimental and numerical investigation into the unsteady interaction of labyrinth seal leakage flow and main flow in a 1.5-stage turbine, ASME Paper GT2004-53024, 2004.
  • 6. P. Adami, F. Martelli, S. Cecchi, Analysis of the shroud leakage flow and main flow interactions in high-pressure turbines using an unsteady CFD approach, [in:] Proceedings of the European Conference On Turbomachinery ETC2007-165, 2007.
  • 7. B. Rosic, J.D. Denton, E.M. Curtis, A.T. Peterson, The influence of shroud and cavity geometry on turbine performance – an experimental and computational study; Part 2: Exit cavity geometry, ASME Paper GT2007-27770, 2007.
  • 8. R. Rudolph, R. Sunshine, M. Woodhall, M. Haendler, Innovative design features of the SGT5-8000h turbine And secondary air system, ASME Paper GT2009-60137, 2009.
  • 9. J. Li, X. Yan, G. Li, Z. Feng, Effects of pressure ratio and sealing clearance on leakage flow characteristics in the rotating honeycomb labyrinth, ASME Paper GT2007-27740, 2007.
  • 10. D.C. Choi, D.L. Rhode, Development of a 2-D CFD approach for computing 3-D honeycomb labyrinth leakage, ASME Paper GT2003-38238, 2003.
  • 11. B.I. Soemarwoto, J.C. Kok, K.M.J. de Cock, A.B. Kloosterman, G.A. Kool, Performance evaluation of gas turbine labyrinth seals using computational fluid dynamics, ASME Paper GT2007-27905, 2007.
  • 12. H.H. Chougule, D. Ramerth, D. Ramachandran, Low leakage designs for rotor teeth and honeycomb lands in labyrinth seals, ASME Paper GT2008-51024, 2008.
  • 13. Y. Kang, T.S. Kim, S.Y. Kang, H.K. Moon, Aerodynamic performance of stepped labyrinth seals for gas turbine applications, ASME Paper GT2010-23256, 2010.
  • 14. W. Wróblewski, S. Dykas, K. Bochon, S. Rulik, Optimization of tip seal with honeycomb land in LP counter rotating gas turbine engine, TASK Quarterly, 14/3, 189–207, 2010.
  • 15. S. Zecchi, L. Arcangeli, B. Facchini, Features of a cooling system simulation tool used in industrial preliminary design stage, ASME Paper GT2004-53547, 2010.
  • 16. D. Born, K. Heiniger, G. Zanazzi, T. Mokulys, P. Grossmann, L. Ripamonti, M. Sell, Validation of conjugate heat transfer predictions on labyrinth seals and novel designs for improved component lifetime, ASME Paper GT2011-45358, 2011.
  • 17. K. He, J. Li, X. Yan, Z. Feng, Investigations of the conjugate heat transfer and windage effect in stepped labyrinth seals, International Journal of Heat and Mass Transfer, 55, 4536–4547, 2012.
  • 18. T. Weinberger, K. Dullenkopf, H.-J. Bauer, Influence of honeycomb facings on the temperature distribution of labyrinth seals, ASME Paper GT2010-22069, 2010.
  • 19. Z. Sun, K. Lindblad, J.W. Chew, C. Young, LES and RANS investigations into buoyancy-affected convection in a rotating cavity with a central axial throughflow, Transactions of the ASME, 129, 318–325, 2007.
  • 20. K. Bochon, Numeryczna ocena zjawisk cieplno-przepływowych w wybranych węzłach stopnia turbiny gazowej [in Polish], Numerical investigation of fluid flow and heat transfer phenomena in selected parts of the gas turbine stage – PhD Thesis, Silesian University of Technology, Gliwice, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac2deae7-b161-48dd-875a-a8966fffffb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.