PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of ultrasound to noninvasive imaging of temperature distribution induced in tissue

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Therapeutic and surgical applications of High Intensity Focused Ultrasound (HIFU) require monitoring of local temperature rises induced inside tissues. It is needed to appropriately target the focal plane, and hence the whole focal volume inside the tumor tissue, prior to thermo-ablative treatment, and the beginning of tissue necrosis. In this study we present an ultrasound method, which calculates the variations of the speed of sound in the locally heated tissue. Changes in velocity correspond to temperature change. The method calculates a 2D distribution of changes in the sound velocity, by estimation of the local phase shifts of RF echo-signals backscattered from the heated tissue volume (the focal volume of the HIFU beam), and received by an ultrasound scanner (23). The technique enabled temperature imaging of the heated tissue volume from the very inception of heating. The results indicated that the contrast sensitivity for imaging of relative changes in the sound speed was on the order of 0.06%; corresponding to an increase in the tissue temperature by about 2 °C.
Czasopismo
Rocznik
Tom
Strony
219--228
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B,Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B,Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B,Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B,Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B,Warsaw, Poland
Bibliografia
  • [1] Pavel S. Yarmolenko, Eui Jung Moon, Chelsea Landon, Ashley Manzoor, Daryl W. Hochman, Benjamin L. Viglianti, Mark W. Dewhirst, Thresholds for thermal damage to normal tissues: An update, Int J Hyperthermia.; 27(4): 320–343, 2011.
  • [2] Hynynen K, MRI-guided focused ultrasound treatments. Ultrasonics 50: 221-229, 2010
  • [3] Bamber JC, Hill CR Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol 5: 149–157, 1979.
  • [4] Maass-Moreno R, Damianou CA Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model. J Acoust Soc Am 100(4): 2514–2521, 1996.
  • [5] Maass-Moreno R, Damianou CA Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study. J Acoust Soc Am 100(4): 2522–2530, 1996.
  • [6] Simon C, VanBaren P, Ebbini E Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 45(4): 1088–1099, 1998.
  • [7] Miller NR, Bamber JC, Meaney PM Fundamental limitations of noninvasive temperature imaging by means of ultrasounds echo strain estimation. Ultrasound Med Biol 28(10): 1319–1333, 2002.
  • [8] Souchon R, Bouchoux G, Maciejko E, Lafon C, Cathignol D, et al. Monitoring the formation of thermal lesions with heat-induced echo-strain imaging: a feasibility study. Ultrasound Med Biol 31(2): 251–259, 2005.
  • [9] Ye G, Smith PP, Noble JA Model-based ultrasound temperature visualization during and following HIFU exposure. Ultrasound Med Biol 36(2): 234-249, 2010.
  • [10] Seip R, Ebbini ES Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE Trans Biomed Eng 42: 828–839, 1995.
  • [11] Liu HL, Li ML, Shih TC, Huang SM, Lu IY, et al. Instantaneous frequency-based ultrasonic temperature estimation during focused ultrasound thermal therapy. Ultrasound Med Biol 35(10): 1647-1661, 2009.
  • [12] Straube WL, Arthur RM Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry. Ultrasound Med Biol 20(9): 915–922, 1994.
  • [13] Arthur RM, Straube WL, Starman JD, Moros EG Noninvasive temperature estimation based on the energy of backscattered ultrasound. Med Phys 30(6): 1021–1029, 2003.
  • [14] Guiot C, Cavalli R, Gaglioti P, Danelon D, Musacchio C, et al. Temperature monitoring using ultrasound contrast agents: in vitro investigation on thermal stability. Ultrasonics 42: 927–930, 2004.
  • [15] Trobaugh JW, Arthur RM, Straube WL, Moros EG A simulation model for ultrasonic temperature imaging using change in backscattered energy. Ultrasound Med Biol 34(2): 289–298, 2008.
  • [16] Shishitani T, Matsuzawa R, Yoshizawa S Changes in backscatter of liver tissue due to thermal coagulation induced by focused ultrasound. J Acoust Soc Am 134(2): 1724- 1730, 2013.
  • [17] Xia J, Li Q, Liu HL, Chen WS, Tsui PH An Approach for the Visualization of Temperature Distribution in Tissues According to Changes in Ultrasonic Backscattered Energy. Comput Math Methods Med, 2013.
  • [18] Teixeira CA, Alvarenga AV, Cortela G, von Krüger MA, Pereira WCA Feasibility of non-invasive temperature estimation by the assessment of the average gray-level content of B-mode images. Ultrasonics 54(6): 1692-1702, 2014.
  • [19] Chen BT, Shieh J, Huang CW, Chen WS, Chen ZR, et al. Ultrasound thermal mapping based on a hybrid method combining physical and statistical models. Ultrasound Med Biol 40(1): 115–129, 2014.
  • [20] Tsui PH, Shu YC, Chen WS, Liu HL, Hsiao IT, et al. Ultrasound temperature estimation based on probability variation of backscatter data. Med Phys 39(5): 2369- 2385, 2012.
  • [21] Zhang S, Zhou F, Wan M, Wei M, Fu Q, et al. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions. J Acoust Soc Am 131(6): 4836-4844, 2012.
  • [22] Rangraz P, Behnam H, Tavakkoli J Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue. Proc Inst Mech Eng H 228(1): 19-26, 2014.
  • [23] Karwat P., Kujawska T., Lewin P.A., Secomski W., Gambin B., Litniewski J., Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm2) intensity focused ultrasound beam using phase shift of ultrasound echoes, Ultrasonics, 65, pp.211-219, 2016.
  • [24] Jensen JA, Nikolov SI, Gammelmark KL, Pedersen MH Synthetic aperture ultrasound imaging. Ultrasonics 44: pp5–15, 2006.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ac240171-c4b5-412f-b574-08213bdaccb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.